Computational Solution of Nonlinear Systems of Equations

Computational Solution of Nonlinear Systems of Equations

Nonlinear equations arise in essentially every branch of modern science, engineering, and mathematics. However, in only a very few special cases is it possible to obtain useful solutions to nonlinear equations via analytical calculations. As a result, many scientists resort to computational methods. This book contains the proceedings of the Joint AMS-SIAM Summer Seminar, ``Computational Solution of Nonlinear Systems of Equations,'' held in July 1988 at Colorado State University. The aim of the book is to give a wide-ranging survey of essentially all of the methods which comprise currently active areas of research in the computational solution of systems of nonlinear equations. A number of ``entry-level'' survey papers were solicited, and a series of test problems has been collected in an appendix. Most of the articles are accessible to students who have had a course in numerical analysis.

Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics

Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics

by spin or (spin s = 1/2) field equations is emphasized because their solutions can be used for constructing solutions of other field equations insofar as fields with any spin may be constructed from spin s = 1/2 fields. A brief account of the main ideas of the book is presented in the Introduction. The book is largely based on the authors' works [55-109, 176-189, 13-16, 7*-14*,23*, 24*] carried out in the Institute of Mathematics, Academy of Sciences of the Ukraine. References to other sources is not intended to imply completeness. As a rule, only those works used directly are cited. The authors wish to express their gratitude to Academician Yu.A. Mitropoi sky, and to Academician of Academy of Sciences of the Ukraine O.S. Parasyuk, for basic support and stimulation over the course of many years; to our cowork ers in the Department of Applied Studies, LA. Egorchenko, R.Z. Zhdanov, A.G. Nikitin, LV. Revenko, V.L Lagno, and I.M. Tsifra for assistance with the manuscript.

The Defocusing Nonlinear SchrÓdinger Equation

From Dark Solitons to Vortices and Vortex Rings

The Defocusing Nonlinear SchrÓdinger Equation

Bose?Einstein condensation is a phase transition in which a fraction of particles of a boson gas condenses into the same quantum state known as the Bose?Einstein condensate (BEC). The aim of this book is to present a wide array of findings in the realm of BECs and on the nonlinear SchrÓdinger-type models that arise therein.÷The Defocusing Nonlinear SchrÓdinger Equation÷is a broad study of nonlinear÷excitations in self-defocusing nonlinear media. It summarizes state-of-the-art knowledge on the defocusing nonlinear SchrÓdinger-type models in a single volume and contains a wealth of resources, including over 800 references to relevant articles and monographs and a meticulous index for ease of navigation.

Integrable Systems and Random Matrices

In Honor of Percy Deift : Conference on Integrable Systems, Random Matrices, and Applications in Honor of Percy Deift's 60th Birthday, May 22-26, 2006, Courant Institute of Mathematical Sciences, New York University, New York

Integrable Systems and Random Matrices

This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.

Nearly Integrable Infinite-Dimensional Hamiltonian Systems

Nearly Integrable Infinite-Dimensional Hamiltonian Systems

The book is devoted to partial differential equations of Hamiltonian form, close to integrable equations. For such equations a KAM-like theorem is proved, stating that solutions of the unperturbed equation that are quasiperiodic in time mostly persist in the perturbed one. The theorem is applied to classical nonlinear PDE's with one-dimensional space variable such as the nonlinear string and nonlinear Schr|dinger equation andshow that the equations have "regular" (=time-quasiperiodic and time-periodic) solutions in rich supply. These results cannot be obtained by other techniques. The book will thus be of interest to mathematicians and physicists working with nonlinear PDE's. An extensivesummary of the results and of related topics is provided in the Introduction. All the nontraditional material used is discussed in the firstpart of the book and in five appendices.

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

Topics and key features: * Thorough coverage of derivation and methods of solutions for all fundamental nonlinear model equations, which include Korteweg--de Vries, Boussinesq, Burgers, Fisher, nonlinear reaction-diffusion, Euler--Lagrange, nonlinear Klein--Gordon, sine-Gordon, nonlinear Schrödinger, Euler, Water Waves, Camassa and Holm, Johnson, Davey-Stewartson, Kolmogorov, Petrovsky and Piscunov, Kadomtsev and Petviashivilli, Benjamin, Bona and Mahony, Harry Dym, Lax, and Whitman equations * Systematic presentation and explanation of conservation laws, weak solutions, and shock waves * Solitons, compactons, intrinsic localized modes, and the Inverse Scattering Transform * Special emphasis on nonlinear instability of dispersive waves with applications to water waves * Over 600 worked examples and end-of-chapter exercises with hints and selected solutions New features of the Second Edition include: * Improved presentation of results, methods of solutions,