Model Predictive Control

Theory, Practices and Future Challenges

Model Predictive Control

Although industrial processes are inherently nonlinear, many contributions for controller design for those plants are based on the assumption of a linear model of the system. However, in some cases it is difficult to represent a given process using a linear model. Model Predictive Control (MPC) is an optimal control approach which can effectively deal with constraints and multivariable processes in industries. Because of its advantages, MPC has been widely applied in automotive and process control communities. This book discusses the theory, practices and future challenges of model predictive control.

Nonlinear Model Predictive Control

Towards New Challenging Applications

Nonlinear Model Predictive Control

Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.

Model Predictive Control

Model Predictive Control

The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.

Model Predictive Control

Model Predictive Control

The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.

Handbook of Model Predictive Control

Handbook of Model Predictive Control

Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Applications of Model Predictive Control to Vehicle Dynamics for Active Safety and Stability

Applications of Model Predictive Control to Vehicle Dynamics for Active Safety and Stability

Each year in the United States, thousands of lives are lost as a result of loss of control crashes. Production driver assistance systems such as electronic stability control (ESC) have been shown to be highly effective in preventing many of these automotive crashes, yet these systems rely on a sensor suite that yields limited information about the road conditions and vehicle motion. Furthermore, ESC systems rely on gains and thresholds that are tuned to yield good performance without feeling overly restrictive to the driver. This dissertation presents an alternative approach to providing stabilization assistance to the driver which leverages additional information about the vehicle and road that may be obtained with advanced estimation techniques. This new approach is based on well-known and robust vehicle models and utilizes phase plane analysis techniques to describe the limits of stable vehicle handling, alleviating the need for hand tuning of gains and thresholds. The resulting state space within the computed handling boundaries is referred to as a safe handling envelope. In addition to the boundaries being straightforward to calculate, this approach has the benefit of offering a way for the designer of the system to directly adjust the controller to accomodate the preferences of different drivers. A model predictive control structure capable of keeping the vehicle within the safe handling boundaries is the final component of the envelope control system. This dissertation presents the design of a controller that is capable of smoothly and progressively augmenting the driver steering input to enforce the boundaries of the envelope. The model predictive control formulation provides a method for making trade-offs between enforcing the boundaries of the envelope, minimizing disruptive interventions, and tracking the driver's intended trajectory. Experiments with a steer-by-wire test vehicle demonstrate that the model predictive envelope control system is capable of operating in conjunction with a human driver to prevent loss of control of the vehicle while yielding a predictable vehicle trajectory. These experiments considered both the ideal case of state information from a GPS/INS system and an a priori friction estimate as well as a real-world implementation estimating the vehicle states and friction coefficient from steering effort and inertial sensors. Results from the experiments demonstrated a controller that is tolerant of vehicle and tire parameterization errors and works well over a wide range of conditions. When real time sensing of the states and friction properties is enabled, the results show that coupling of the controller and estimator is possible and the model predictive control structure provides a mechanism for minimizing undesirable coupled dynamics through tuning of intuitive controller parameters. The model predictive control structure presented in this dissertation may also be considered as a general framework for vehicle control in conjunction with a human driver. The structure utilized for envelope control may also be used to restrict other vehicle states for safety and stability. Results are presented in this dissertation to show that a model predictive controller can coordinate a secondary actuator to alter the planar states and reduce the energy transferred into the roll modes of the vehicle. The systematic approach to vehicle stabilization presented in this dissertation has the potential to improve the design methodology for future systems and form the basis for the inclusion of more advanced functions as sensing and computing capabilities improve. The envelope control system presented here offers the opportunity to advance the state of the art in stabilization assistance and provides a way to help drivers of all skill levels maintain control of their vehicle.

Automotive Model Predictive Control

Models, Methods and Applications

Automotive Model Predictive Control

Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.