Mineral Nutrition of Higher Plants

Mineral Nutrition of Higher Plants

An understanding of the mineral nutrition of plants is of fundamental importance in both basic and applied plant sciences. The Second Edition of this book retains the aim of the first in presenting the principles of mineral nutrition in the light of current advances. This volume retains the structure of the first edition, being divided into two parts: Nutritional Physiology and Soil-Plant Relationships. In Part I, more emphasis has been placed on root-shoot interactions, stress physiology, water relations, and functions of micronutrients. In view of the worldwide increasing interest in plant-soil interactions, Part II has been considerably altered and extended, particularly on the effects of external and interal factors on root growth and chapter 15 on the root-soil interface. The second edition will be invaluable to both advanced students and researchers. Key Features * Second Edition of this established text * Structure of the book remains the same * 50% of the reference and 50% of the figures and tables have been replaced * Whole of the text has been revised * Coverage of plant (soil interactions has been increased considerably)

Marschner's Mineral Nutrition of Higher Plants

Marschner's Mineral Nutrition of Higher Plants

An understanding of the mineral nutrition of plants is of fundamental importance in both basic and applied plant sciences. The Second Edition of this book retains the aim of the first in presenting the principles of mineral nutrition in the light of current advances. This volume retains the structure of the first edition, being divided into two parts: Nutritional Physiology and Soil-Plant Relationships. In Part I, more emphasis has been placed on root-shoot interactions, stress physiology, water relations, and functions of micronutrients. In view of the worldwide increasing interest in plant-soil interactions, Part II has been considerably altered and extended, particularly on the effects of external and interal factors on root growth and chapter 15 on the root-soil interface. The second edition will be invaluable to both advanced students and researchers. Second Edition of this established text Structure of the book remains the same 50% of the reference and 50% of the figures and tables have been replaced Whole of the text has been revised Coverage of plant (soil interactions has been increased considerably)

Mineral Nutrition of Higher Plants

Mineral Nutrition of Higher Plants

An understanding of the mineral nutrition of plants is of fundamental importance in both basic and applied plant sciences. The Second Edition of this book retains the aim of the first in presenting the principles of mineral nutrition in the light of current advances. This volume retains the structure of the first edition, being divided into two parts: Nutritional Physiology and Soil-Plant Relationships. In Part I, more emphasis has been placed on root-shoot interactions, stress physiology, water relations, and functions of micronutrients. In view of the worldwide increasing interest in plant-soil interactions, Part II has been considerably altered and extended, particularly on the effects of external and interal factors on root growth and chapter 15 on the root-soil interface. The second edition will be invaluable to both advanced students and researchers. Second Edition of this established text Structure of the book remains the same 50% of the reference and 50% of the figures and tables have been replaced Whole of the text has been revised Coverage of plant (soil interactions has been increased considerably)

The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions

The significance of the apoplast for the mineral nutrition of higher plants

The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions

This book summarizes the experimental work conducted during a trans-disciplinary research program conducted for six years by the German Research Foundation. Each chapter includes introductory remarks written by internationally recognized scientists in their research areas. Contributiing authors representing outstanding German scientists from such different disciplines as Physics, Biochemistry, Plant Nutrition, Botany, and Molecular Biology not only report original research but also review the state of knowledge in their fields of research.

Mineral Nutrition of Rice

Mineral Nutrition of Rice

The third most important cereal crop after wheat and corn, rice is a staple food for more than half of the world’s population. This includes regions of high population density and rapid growth, indicating that rice will continue to be a major food crop in the next century. Mineral Nutrition of Rice brings together a wealth of information on the ecophysiology and nutrient requirements of rice. Compiling the latest scientific research, the book explains how to manage essential nutrients to maximize rice yield. The book examines 15 essential or beneficial nutrients used in irrigated, upland, and floating rice across a range of geographic regions. For each mineral, the text details the cycle in the soil–plant system as well as the mineral’s functions, deficiency symptoms, uptake in plants, harvest index, and use efficiency. It then outlines management practices, covering application methods and timing, adequate rates, the use of efficient genotypes, and more. The author, an internationally recognized expert in mineral nutrition for crop plants, also proposes recommendations for the judicious use of fertilizers to reduce the cost of crop production and the risk of environmental pollution. Color photographs help readers identify nutrient deficiency symptoms and take the necessary corrective measures. Packed with useful tables and illustrations, this comprehensive reference guides readers who want to know how to increase rice yield, reduce production costs, and avoid environmental pollution from fertilizers. It offers practical information for those working in agricultural research fields, in laboratories, and in classrooms around the world.

Mineral Nutrition of Higher Plants

Mineral Nutrition of Higher Plants

Nutritional physiology: uptake of mineral elements by leaves and other aerial plants. Foliar application of mineral nutrients. Leaching of mineral elements from leaves. Soil - plant relationships: nutrient availability in soils. Chemical soil analysis. Effect of external and internal factors on root growth and development. Hormonal control. Soil chemical factors. Soil physical factors. Adaptation of plants to adverse chemical soil conditions. Natural vegetation. Acid mineral soils. Alkaline soils. Saline soils.

Diversity and Integration in Mycorrhizas

Diversity and Integration in Mycorrhizas

Reprinted from: Plant and soil, v.244, no. 1-2, 2002.

Plant Nutrition of Greenhouse Crops

Plant Nutrition of Greenhouse Crops

Greenhouse cultivation is noted for its high uptake of minerals, consistent climatic conditions, exclusion of natural precipitation and control of salt accumulation. Acknowledging that plant nutrition in greenhouse cultivation differs in many essentials from field production, this volume details specific information about testing methods for soils and substrates in a greenhouse environment. It does so while offering a universally applicable analysis. This is based on the composition of the soil and substrate solutions, methods for the interpretation of tissue tests, and crop responses on salinity and water supply in relation to fertilizer application. Fertilizer additions, related to analytical data of soil and substrate samples, are presented for a wide range of vegetable and ornamental crops. The subject is especially apt now as substrate growing offers excellent possibilities for the optimal use of water and nutrients, as well as the potential for sustainable production methods for greenhouse crops.

Nutrient Use Efficiency: from Basics to Advances

Nutrient Use Efficiency: from Basics to Advances

This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.