*Theoretical Foundations and Applications in Computer Vision and Robotics*

## Geometric Algebra Computing

## Clifford Algebra to Geometric Calculus

*A Unified Language for Mathematics and Physics*

## Invariant Algebras and Geometric Reasoning

The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics OCo among them, GrassmannOCoCayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of GrassmannOCoCayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras OCo Cayley bracket algebra, conformal geometric algebra, and null bracket algebra OCo for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. Sample Chapter(s). Chapter 1: Introduction (252 KB). Contents: Projective Space, Bracket Algebra and GrassmannOCoCayley Algebra; Projective Incidence Geometry with Cayley Bracket Algebra; Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra; Inner-product Bracket Algebra and Clifford Algebra; Geometric Algebra; Euclidean Geometry and Conformal GrassmannOCoCayley Algebra; Conformal Clifford Algebra and Classical Geometries. Readership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.

## Clifford Algebras and their Applications in Mathematical Physics

*Volume 1: Algebra and Physics*

## Geometric Computing for Perception Action Systems

*Concepts, Algorithms, and Scientific Applications*

## Introduction to Geometric Algebra Computing

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.

## Handbook of Geometric Computing

*Applications in Pattern Recognition, Computer Vision, Neuralcomputing, and Robotics*

## Foundations of Geometric Algebra Computing

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.

## Clifford Algebras and their Applications in Mathematical Physics

*Clifford analysis. Volume 2*