Foundations of Laser Spectroscopy

Foundations of Laser Spectroscopy

A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

Laser Spectroscopy

Vol. 1: Basic Principles

Laser Spectroscopy

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, including applications in chemical analysis, medical diagnostics, and engineering. No other book with such a broad scope is available. The author is one of the most renowned experts in this area. The book is well illustrated, and is supplemented by an extensive set of references. It will benefit all students and scientists working in the field.

Laser Spectroscopy 1

Basic Principles

Laser Spectroscopy 1

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femtosecond lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

Laser Spectroscopy for Sensing

Fundamentals, Techniques and Applications

Laser Spectroscopy for Sensing

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry

Electrodynamics of Solids

Optical Properties of Electrons in Matter

Electrodynamics of Solids

A graduate-level book about the propagation of electromagnetic fields and their interaction with condensed matter.

Laser Chemistry

Spectroscopy, Dynamics and Applications

Laser Chemistry

Laser Chemistry: Spectroscopy, Dynamics and Applications provides a basic introduction to the subject, written for students and other novices. It assumes little in the way of prior knowledge, and carefully guides the reader through the important theory and concepts whilst introducing key techniques and applications.

Plasma Spectroscopy

The Influence of Microwave and Laser Fields

Plasma Spectroscopy

A systematic development of the foundations of spectroscopy for plasmas subjected to quasi-monochromatic electric fields in the microwave or visible range. Of importance are the transverse fields present in the plasmas of tokamaks, laser fusion, and technological microwave discharges. The book describes methods for measuring the field and plasma parameters and discusses their practical application, while also presenting new results on nonpertubative analysis of the interaction of quantum systems with a strong radiation field.

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics

This volume of Advances in Atomic, Molecular, and Optical Physics celebrates and honors the work and life of Professor Herbert Walther. Areas of emphasis include quantum optics, in general, and BEC, atomic coherence, quantum interference, etc. in particular. Pulls vast amount of information together in cohesive, easy to understand manner Written by people who know and are familiar with Herbert Walther's work Comprehensive articles New developments

Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)

Spectroscopic Measurement

An Introduction to the Fundamentals

Spectroscopic Measurement

Publisher Description