Advanced Classical Field Theory

Advanced Classical Field Theory

Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.

Classical Field Theory

Classical Field Theory

Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretical physics.

Classical Field Theory

Classical Field Theory

Classical field theory predicts how physical fields interact with matter, and is a logical precursor to quantum field theory. This introduction focuses purely on modern classical field theory, helping graduates and researchers build an understanding of classical field theory methods before embarking on future studies in quantum field theory. It describes various classical methods for fields with negligible quantum effects, for instance electromagnetism and gravitational fields. It focuses on solutions that take advantage of classical field theory methods as opposed to applications or geometric properties. Other fields covered includes fermionic fields, scalar fields and Chern–Simons fields. Methods such as symmetries, global and local methods, Noether theorem and energy momentum tensor are also discussed, as well as important solutions of the classical equations, in particular soliton solutions.

Classical Field Theory

Electromagnetism and Gravitation

Classical Field Theory

The author uses a unique approach which emphasizes the field theoretic aspects of gravitation and the strong analogies between gravitation and the other areas that are studied in physics. The theory-centered text begins with the simplest experimental facts then proceeds to the corresponding differential equations, theoretical constructs such as energy, momentum and stress and several applications. End-of-chapter problems provide students with an opportunity to test their understanding, serve as an introduction to and a review of material not included in the book and can be used to develop examples, extensions and generalizations of the material presented.

Mathematical Aspects of Quantum Field Theory

Mathematical Aspects of Quantum Field Theory

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

From Classical Field Theory to Perturbative Quantum Field Theory

From Classical Field Theory to Perturbative Quantum Field Theory

This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.

Special Relativity and Classical Field Theory

The Theoretical Minimum

Special Relativity and Classical Field Theory

A funny, insightful, and self-contained guide to Einstein's relativity theory and classical field theories--including electromagnetism Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.

Classical Theory of Gauge Fields

Classical Theory of Gauge Fields

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.

Classical Field Theory

Classical Field Theory

This text concerns continuum mechanics, electrodynamics and the mechanics of electrically polarized media, and gravity. Geared toward advanced undergraduates and graduate students, it offers an accessible approach that formulates theories according to the principle of least action. The chief advantage of this formulation is its simplicity and ease, making the physical content of classical subjects available to students of physics in a concise form. Author Davison E. Soper, a Professor of Physics at the University of Oregon, intended this treatment as a primary text for courses in classical field theory as well as a supplement for courses in classical mechanics or classical electrodynamics. Topics include fields and transformation laws, the principle of stationary action, general features of classical field theory, the mechanics of fluids and elastic solids, special types of solids, nonrelativistic approximations, and the electromagnetic field. Additional subjects include electromagnetically polarized materials, gravity, momentum conservation in general relativity, and dissipative processes.

Mathematical Aspects of Classical Field Theory

Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held July 20-26, 1991, with Support from the National Science Foundation

Mathematical Aspects of Classical Field Theory