2D and Quasi-2D Composite and Nanocomposite Materials

Properties and Photonic Applications

2D and Quasi-2D Composite and Nanocomposite Materials

2D and Quasi-2D Composite and Nanocomposite Materials: Theory, Properties and Photonic Applications covers the theory, characterization and computational modeling of 2D composite materials and shows how they are used for the creation of materials for 3D structures The book covers three major themes: Properties of 2D and quasi-2D composites are discussed in the context of homogenization theory. Homogenization results are discussed for spatiotemporal material composites assembled from materials which are distributed on a micro-scale in space and in time. New types of transport phenomena and localization in random media are addressed, with particular attention to the non-reciprocity of transport coefficients. Plasmonics and magneto-optics are also of particular interest. Magneto-transport and sub-wavelength resolution in electromagnetic and acoustic imaging are further considered. This book is an important resource for materials scientists and engineers working on nanomaterials, photonic composites, and materials theory, modeling and simulations. Outlines major modelling techniques of 2D nanocomposites for photonic applications Explores how the properties of 2D nanocomposites make them suitable for use for building 3D structures Assesses the challenges of using 2D nanocomposites for designing new devices on a mass scale

2D and 3D Graphene Nanocomposites

Fundamentals, Design, and Devices

2D and 3D Graphene Nanocomposites

In recent decades, graphene composites have received considerable attention due to their unique structural features and extraordinary properties. 2D and 3D graphene hybrid structures are widely used in memory, microelectronic, and optoelectronic devices; energy- and power-density supercapacitors; light-emitting diodes; and sensors, batteries, and solar cells. This book covers the fundamental properties of the latest graphene-based 2D and 3D composite materials. The book is a result of the collective work of many highly qualified specialists in the field of experimental and theoretical research on graphene and its derivatives. It describes experimental methods for obtaining and characterizing samples of chemically modified graphene, details conceptual foundations of popular methods for computer modeling of graphene nanostructures, and compiles original computational techniques developed by the chapter authors. It discusses the potential application areas and modifications of graphene-based 2D and 3D composite materials and interprets the interesting physical effects discovered for the first time for graphene materials under consideration. The book is useful for graduate students and researchers as well as specialists in industrial engineering. It will also appeal to those involved in materials science, condensed matter physics, nanotechnology, physical electronics, nano- and optoelectronics.

3D and 4D Printing of Polymer Nanocomposite Materials

Processes, Applications, and Challenges

3D and 4D Printing of Polymer Nanocomposite Materials

3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case. Provides a thorough, clear understanding of polymer preparation techniques and 3D and 4D printing processes, with a view to specific applications Examines synthesis, formation methodology, the dispersion of fillers, characterization, properties, and performance of polymer nanocomposites Explores the possibilities of 4D printing, covering the usage of stimuli responsive hydrogels and shape memory polymers

Chemistry of Silica and Zeolite-Based Materials

Synthesis, Characterization and Applications

Chemistry of Silica and Zeolite-Based Materials

Chemistry of Silica and Zeolite-Based Materials covers a wide range of topics related to silica-based materials from design and synthesis to applications in different fields of science and technology. Since silica is transparent and inert to the light, it is a very attractive host material for constructing artificial photosynthesis systems. As an earth-abundant oxide, silica is an ideal and basic material for application of various oxides, and the science and technology of silica-based materials are fundamentally important for understanding other oxide-based materials. The book examines nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, photonics, photosensors, photovoltaics, energy, environmental sciences, drug delivery, and health. Written by a highly experienced and internationally renowned team from around the world, Chemistry of Silica and Zeolite-Based Materials is ideal for chemists, materials scientists, chemical engineers, physicists, biologists, biomedical sciences, environmental scientists, toxicologists, and pharma scientists. --- "The enormous versatility of silica for building a large variety of materials with unique properties has been very well illustrated in this book.... The reader will be exposed to numerous potential applications of these materials – from photocatalytic, optical and electronic applications, to chemical reactivity in confined spaces and biological applications. This book is of clear interest not only to PhD students and postdocs, but also to researchers in this field seeking an understanding of the possible applications of meso and microporous silica-derived materials." - Professor Avelino Corma, Institute of Chemical Technology (ITQ-CSIC) and Polytechnical University of Valencia, Spain Discusses the most important advances in various fields using silica materials, including nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, and other topics Written by a global team of experts from a variety of science and technology disciplines Ideal resource for chemists, materials scientists, and chemical engineers working with oxide-based materials

Characterization of Nanocomposites

Technology and Industrial Applications

Characterization of Nanocomposites

These days, advanced multiscale hybrid materials are being produced in the industry, studied by universities, and used in several applications. Unlike for macromaterials, it is difficult to obtain the physical, mechanical, electrical, and thermal properties of nanomaterials because of the scale. Designers, however, must have knowledge of these properties to perform any finite element analysis or durability and damage tolerance analysis. This is the book that brings this knowledge within easy reach. What makes the book unique is the fact that its approach that combines multiscale multiphysics and statistical analysis with multiscale progressive failure analysis. The combination gives a very powerful tool for minimizing tests, improving accuracy, and understanding the effect of the statistical nature of materials, in addition to the mechanics of advanced multiscale materials, all the way to failure. The book focuses on obtaining valid mechanical properties of nanocomposite materials by accurate prediction and observed physical tests, as well as by evaluation of test anomalies of advanced multiscale nanocomposites containing nanoparticles of different shapes, such as chopped fiber, spherical, and platelet, in polymeric, ceramic, and metallic materials. The prediction capability covers delamination, fracture toughness, impact resistance, conductivity, and fire resistance of nanocomposites. The methodology employs a high-fidelity procedure backed with comparison of predictions with test data for various types of static, fatigue, dynamic, and crack growth problems. Using the proposed approach, a good correlation between the simulation and experimental data is established.

Dynamic Behavior of Materials, Volume 1

Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics

Dynamic Behavior of Materials, Volume 1

Dynamic Behavior of Materials, Volume 1: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics SEM 12th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 11-14, 2012. The full set of proceedings also includes volumes on Challenges in Mechanics of Time -Dependent Materials and Processes in Conventional and Multifunctional Materials, Imaging Methods for Novel Materials and Challenging Applications, Experimental and Applied Mechanics, 2nd International Symposium on the Mechanics of Biological Systems and Materials 13th International Symposium on MEMS and Nanotechnology and, Composite Materials and the 1st International Symposium on Joining Technologies for Composites.

Materials and Design

Materials and Design

The papers in this volume were subjected to peer and expert reviews, and cover the subjects of composites, micro-/nano-materials, iron and steel, ceramics, metallic alloy materials, biomaterials, high-performance elastomers and polymers, materials physics, materials chemistry, optical/electronic/magnetic materials and other related topics. The work offers valuable up-to-date coverage of the topics.