topics in finite and discrete mathematics

Download Book Topics In Finite And Discrete Mathematics in PDF format. You can Read Online Topics In Finite And Discrete Mathematics here in PDF, EPUB, Mobi or Docx formats.

Topics In Finite And Discrete Mathematics

Author : Sheldon M. Ross
ISBN : 052177571X
Genre : Mathematics
File Size : 43. 75 MB
Format : PDF, Docs
Download : 213
Read : 150

Download Now


A text for engineering students with many examples not normally found in finite mathematics courses, first published in 2000.

Discrete Mathematics With Proof

Author : Eric Gossett
ISBN : 9780470457931
Genre : Mathematics
File Size : 64. 96 MB
Format : PDF, Docs
Download : 375
Read : 274

Download Now


"Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. - Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. - It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics."--Jacket.

A Beginner S Guide To Finite Mathematics

Author : W.D. Wallis
ISBN : 9781475738148
Genre : Mathematics
File Size : 42. 42 MB
Format : PDF, Kindle
Download : 172
Read : 959

Download Now


This concisely written text in finite mathematics gives a sequential, distinctly applied presentation of topics, employing a pedagogical approach that is ideal for freshmen and sophomores in business, the social sciences, and the liberal arts. The work opens with a brief review of sets and numbers, followed by an introduction to data sets, counting arguments, and the Binomial Theorem, which sets the foundation for elementary probability theory and some basic statistics. Further chapters treat graph theory as it relates to modelling, matrices and vectors, and linear programming. Requiring only two years of high school algebra, this book's many examples and illuminating problem sets - with selected solutions - will appeal to a wide audience of students and teachers.

Discrete Mathematics Research Progress

Author : Kenneth Brian Moore
ISBN : 1604561238
Genre : Mathematics
File Size : 43. 24 MB
Format : PDF, ePub
Download : 532
Read : 727

Download Now


Discrete mathematics, also called finite mathematics or Decision Maths, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets, such as integers, finite graphs, and formal languages. Discrete mathematics has become popular in recent decades because of its applications to computer science. Concepts and notations from discrete mathematics are useful to study or describe objects or problems in computer algorithms and programming languages. In some mathematics curricula, finite mathematics courses cover discrete mathematical concepts for business, while discrete mathematics courses emphasise concepts for computer science majors.

Finite And Discrete Math Problem Solver

Author : Research & Education Association Editors
ISBN : 0738668338
Genre : Mathematics
File Size : 54. 24 MB
Format : PDF, ePub
Download : 407
Read : 1168

Download Now


h Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of finite and discrete math currently available, with hundreds of finite and discrete math problems that cover everything from graph theory and statistics to probability and Boolean algebra. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction Chapter 1: Logic Statements, Negations, Conjunctions, and Disjunctions Truth Table and Proposition Calculus Conditional and Biconditional Statements Mathematical Induction Chapter 2: Set Theory Sets and Subsets Set Operations Venn Diagram Cartesian Product Applications Chapter 3: Relations Relations and Graphs Inverse Relations and Composition of Relations Properties of Relations Equivalence Relations Chapter 4: Functions Functions and Graphs Surjective, Injective, and Bijective Functions Chapter 5: Vectors and Matrices Vectors Matrix Arithmetic The Inverse and Rank of a Matrix Determinants Matrices and Systems of Equations, Cramer's Rule Special Kinds of Matrices Chapter 6: Graph Theory Graphs and Directed Graphs Matrices and Graphs Isomorphic and Homeomorphic Graphs Planar Graphs and Colorations Trees Shortest Path(s) Maximum Flow Chapter 7: Counting and Binomial Theorem Factorial Notation Counting Principles Permutations Combinations The Binomial Theorem Chapter 8: Probability Probability Conditional Probability and Bayes' Theorem Chapter 9: Statistics Descriptive Statistics Probability Distributions The Binomial and Joint Distributions Functions of Random Variables Expected Value Moment Generating Function Special Discrete Distributions Normal Distributions Special Continuous Distributions Sampling Theory Confidence Intervals Point Estimation Hypothesis Testing Regression and Correlation Analysis Non-Parametric Methods Chi-Square and Contingency Tables Miscellaneous Applications Chapter 10: Boolean Algebra Boolean Algebra and Boolean Functions Minimization Switching Circuits Chapter 11: Linear Programming and the Theory of Games Systems of Linear Inequalities Geometric Solutions and Dual of Linear Programming Problems The Simplex Method Linear Programming - Advanced Methods Integer Programming The Theory of Games Index WHAT THIS BOOK IS FOR Students have generally found finite and discrete math difficult subjects to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of finite and discrete math continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of finite and discrete math terms also contribute to the difficulties of mastering the subject. In a study of finite and discrete math, REA found the following basic reasons underlying the inherent difficulties of finite and discrete math: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem that leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by a finite and discrete math professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing finite and discrete math processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to finite and discrete math than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in finite and discrete math overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers finite and discrete math a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.

Combinatorial Methods With Computer Applications

Author : Jonathan L. Gross
ISBN : 9781584887447
Genre : Mathematics
File Size : 23. 97 MB
Format : PDF, ePub, Docs
Download : 705
Read : 813

Download Now


Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.

Topics In Finite Elasticity

Author : Morton E. Gurtin
ISBN : 1611970342
Genre : Elasticity
File Size : 43. 10 MB
Format : PDF, Mobi
Download : 206
Read : 872

Download Now


Finite elasticity is a theory of elastic materials that are capable of undergoing large deformations. This theory is inherently nonlinear and is mathematically quite complex. This monograph presents a derivation of the basic equations of the theory, a discussion of the general boundary-value problems, and a treatment of several interesting and important special topics such as simple shear, uniqueness, the tensile deformations of a cube, and antiplane shear. The monograph is intended for engineers, physicists, and mathematicians.

The Joy Of Finite Mathematics

Author : Chris P. Tsokos
ISBN : 9780128029855
Genre : Mathematics
File Size : 22. 84 MB
Format : PDF
Download : 206
Read : 326

Download Now


The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors’ experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida’s CLAST exam or similar core requirements. Highlighted definitions, rules, methods, and procedures, and abundant tables, diagrams, and graphs, clearly illustrate important concepts and methods Provides end-of-chapter vocabulary and concept reviews, as well as robust review exercises and a practice test Contains information relevant to a wide range of topics, including symbolic language, contemporary math, liberal arts math, social sciences math, basic math for finance, math for humanities, probability, and the C.L.A.S.T. exam Optional advanced sections and challenging problems are included for use at the discretion of the instructor Online resources include PowerPoint Presentations for instructors and a useful student manual

Discrete Mathematics Of Neural Networks

Author : Martin Anthony
ISBN : 9780898714807
Genre : Computers
File Size : 65. 61 MB
Format : PDF, ePub, Mobi
Download : 278
Read : 1038

Download Now


This concise, readable book provides a sampling of the very large, active, and expanding field of artificial neural network theory. It considers select areas of discrete mathematics linking combinatorics and the theory of the simplest types of artificial neural networks. Neural networks have emerged as a key technology in many fields of application, and an understanding of the theories concerning what such systems can and cannot do is essential. Some classical results are presented with accessible proofs, together with some more recent perspectives, such as those obtained by considering decision lists. In addition, probabilistic models of neural network learning are discussed. Graph theory, some partially ordered set theory, computational complexity, and discrete probability are among the mathematical topics involved. Pointers to further reading and an extensive bibliography make this book a good starting point for research in discrete mathematics and neural networks.

Discrete Mathematics With Applications

Author : Thomas Koshy
ISBN : 0080477348
Genre : Mathematics
File Size : 33. 3 MB
Format : PDF, Mobi
Download : 680
Read : 200

Download Now


This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation. * Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations * Weaves numerous applications into the text * Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects * Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises * Features interesting anecdotes and biographies of 60 mathematicians and computer scientists * Instructor's Manual available for adopters * Student Solutions Manual available separately for purchase (ISBN: 0124211828)

Top Download:

Best Books