# the classical theory of integral equations

**Download Book The Classical Theory Of Integral Equations in PDF format. You can Read Online The Classical Theory Of Integral Equations here in PDF, EPUB, Mobi or Docx formats.**

## The Classical Theory Of Integral Equations

**Author :**Stephen M. Zemyan

**ISBN :**9780817683498

**Genre :**Mathematics

**File Size :**23. 34 MB

**Format :**PDF, ePub

**Download :**391

**Read :**1205

The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.

## Linear Integral Equations

**Author :**Ram P. Kanwal

**ISBN :**9781483262505

**Genre :**Mathematics

**File Size :**78. 50 MB

**Format :**PDF, ePub, Docs

**Download :**854

**Read :**754

Linear Integral Equations: Theory and Technique is an 11-chapter text that covers the theoretical and methodological aspects of linear integral equations. After a brief overview of the fundamentals of the equations, this book goes on dealing with specific integral equations with separable kernels and a method of successive approximations. The next chapters explore the properties of classical Fredholm theory and the applications of linear integral equations to ordinary and partial differential equations. These topics are followed by discussions of the symmetric kernels, singular integral equations, and the integral transform methods. The final chapters consider the applications of linear integral equations to mixed boundary value problems. These chapters also look into the integral equation perturbation methods. This book will be of value to undergraduate and graduate students in applied mathematics, theoretical mechanics, and mathematical physics.

## Volterra Integral Equations

**Author :**Hermann Brunner

**ISBN :**9781107098725

**Genre :**Mathematics

**File Size :**45. 83 MB

**Format :**PDF, Mobi

**Download :**275

**Read :**1127

This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations. It includes applications and an extensive bibliography.

## Integral Equations

**Author :**Harry Hochstadt

**ISBN :**9781118165935

**Genre :**Mathematics

**File Size :**69. 54 MB

**Format :**PDF

**Download :**641

**Read :**540

This classic work is now available in an unabridged paperback edition. Hochstatdt's concise treatment of integral equations represents the best compromise between the detailed classical approach and the faster functional analytic approach, while developing the most desirable features of each. The seven chapters present an introduction to integral equations, elementary techniques, the theory of compact operators, applications to boundary value problems in more than dimension, a complete treatment of numerous transform techniques, a development of the classical Fredholm technique, and application of the Schauder fixed point theorem to nonlinear equations.

## Singular Integral Equations

**Author :**Ricardo Estrada

**ISBN :**0817640851

**Genre :**Mathematics

**File Size :**65. 53 MB

**Format :**PDF, Docs

**Download :**572

**Read :**509

This work focuses on the distributional solutions of singular integral equations, progressing from basic concepts of the classical theory to the more difficult two-dimensional problems.

## Linear Integral Equations

**Author :**Rainer Kress

**ISBN :**9781461495932

**Genre :**Mathematics

**File Size :**84. 35 MB

**Format :**PDF, Kindle

**Download :**900

**Read :**697

This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)

## Handbook Of Integral Equations

**Author :**Andrei D. Polyanin

**ISBN :**1420050060

**Genre :**Mathematics

**File Size :**38. 9 MB

**Format :**PDF, Kindle

**Download :**542

**Read :**174

Integral equations are encountered in various fields of science and in numerous applications, including elasticity, plasticity, heat and mass transfer, oscillation theory, fluid dynamics, filtration theory, electrostatics, electrodynamics, biomechanics, game theory, control, queuing theory, electrical engineering, economics, and medicine. Exact (closed-form) solutions of integral equations play an important role in the proper understanding of qualitative features of many phenomena and processes in various areas of natural science. Equations of physics, chemistry, and biology contain functions or parameters obtained from experiments - hence, they are not strictly fixed. Therefore, it is expedient to choose the structure of these functions for more easily analyzing and solving the equation. As a possible selection criterion, one may adopt the requirement that the model integral equation admit a solution in a closed form. Exact solutions can be used to verify the consistency and estimate errors of various numerical, asymptotic, and approximate methods. The first part of Handbook of Integral Equations: Contains more than 2,100 integral equations and their solutions Includes many new exact solutions to linear and nonlinear equations Addresses equations of general form, which depend on arbitrary functions Other equations contain one or more free parameters (the book actually deals with families of integral equations); the reader has the option to fix these parameters. The second part of the book - chapters 7 through 14 - presents exact, approximate analytical, and numerical methods for solving linear and nonlinear integral equations. Apart from the classical methods, the text also describes some new methods. When selecting the material, the authors emphasize practical aspects of the matter, specifically for methods that allow an effective "constructing" of the solution. Each section provides examples of applicatio

## Integral Equations

**Author :**Smithies

**ISBN :**052106502X

**Genre :**Mathematics

**File Size :**62. 82 MB

**Format :**PDF, ePub

**Download :**285

**Read :**904

This tract is devoted to the theory of linear equations, mainly of the second kind, associated with the names of Volterra, Fredholm, Hilbert and Schmidt. The treatment has been modernised by the systematic use of the Lebesgue integral, which considerably widens the range of applicability of the theory. Special attention is paid to the singular functions of non-symmetric kernels and to obtaining as strong results as possible for the convergence of the expansions in infinite series. References are given to work on numerical methods of solution. Individual chapters deal with the resolvent kernel and the Neumann series, the Fredholm theorems, orthonormal systems of functions, the classical Fredholm theory, the Fred-holm formulae for ß2 kernels, Hermitian kernels, singular functions and singular values.

## Integral Equations

**Author :**D.C. SHARMA,

**ISBN :**9788120352803

**Genre :**Mathematics

**File Size :**30. 73 MB

**Format :**PDF, ePub

**Download :**171

**Read :**1027

Designed for the postgraduate students of mathematics, the book on Integral Equations equips the students with an in-depth and single-source coverage of the complete spectrum of Integral Equations, including the basic concepts, Fredholm integral equations, separable and symmetric kernels, solutions of integral equations, classical Fredholm theory, integral transform method, and so on. Divided into eight chapters, the text addresses the doubts and concerns of the students. Examples given in the chapters inculcate the habit to try to solve more and more problems based on integral equations and create confidence in students. Bridging the gap between theory and practice, the book offers Clear and concise presentation Systematic discussion of the concepts Numerous worked-out examples to make the students aware of problem-solving methodology Sufficient exercises containing ample unsolved questions along with their answers Practice questions with intermediate results to help students from practice point-of-view

## Integral Equations

**Author :**Wolfgang Hackbusch

**ISBN :**9783034892155

**Genre :**Mathematics

**File Size :**44. 86 MB

**Format :**PDF, Kindle

**Download :**857

**Read :**436

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.