text mining and visualization case studies using open source tools chapman hall crc data mining and knowledge discovery series

Download Book Text Mining And Visualization Case Studies Using Open Source Tools Chapman Hall Crc Data Mining And Knowledge Discovery Series in PDF format. You can Read Online Text Mining And Visualization Case Studies Using Open Source Tools Chapman Hall Crc Data Mining And Knowledge Discovery Series here in PDF, EPUB, Mobi or Docx formats.

Text Mining And Visualization

Author : Markus Hofmann
ISBN : 9781482237580
Genre : Business & Economics
File Size : 33. 62 MB
Format : PDF
Download : 995
Read : 277

Download Now


Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors—all highly experienced with text mining and open-source software—explain how text data are gathered and processed from a wide variety of sources, including books, server access logs, websites, social media sites, and message boards. Each chapter presents a case study that you can follow as part of a step-by-step, reproducible example. You can also easily apply and extend the techniques to other problems. All the examples are available on a supplementary website. The book shows you how to exploit your text data, offering successful application examples and blueprints for you to tackle your text mining tasks and benefit from open and freely available tools. It gets you up to date on the latest and most powerful tools, the data mining process, and specific text mining activities.

Human Capital Systems Analytics And Data Mining

Author : Robert C. Hughes
ISBN : 9781498764797
Genre : Business & Economics
File Size : 43. 90 MB
Format : PDF, ePub
Download : 156
Read : 468

Download Now


Human Capital Systems, Analytics, and Data Mining provides human capital professionals, researchers, and students with a comprehensive and portable guide to human capital systems, analytics and data mining. The main purpose of this book is to provide a rich tool set of methods and tutorials for Human Capital Management Systems (HCMS) database modeling, analytics, interactive dashboards, and data mining that is independent of any human capital software vendor offerings and is equally usable and portable among both commercial and internally developed HCMS. The book begins with an overview of HCMS, including coverage of human resource systems history and current HCMS Computing Environments. It next explores relational and dimensional database management concepts and principles. HCMS Instructional databases developed by the Author for use in Graduate Level HCMS and Compensation Courses are used for database modeling and dashboard design exercises. Exciting knowledge discovery and research Tutorials and Exercises using Online Analytical Processing (OLAP) and data mining tools through replication of actual original pay equity research by the author are included. New findings concerning Gender Based Pay Equity Research through the lens Comparable Worth and Occupational Mobility are covered extensively in Human Capital Metrics, Analytics and Data Mining Chapters.

Feature Engineering For Machine Learning And Data Analytics

Author : Guozhu Dong
ISBN : 9781351721271
Genre : Business & Economics
File Size : 77. 88 MB
Format : PDF, ePub
Download : 846
Read : 276

Download Now


Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Exploratory Data Analysis Using R

Author : Ronald K. Pearson
ISBN : 9780429847035
Genre : Business & Economics
File Size : 38. 47 MB
Format : PDF, Docs
Download : 551
Read : 1202

Download Now


Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data. The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing. The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available. About the Author: Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).

Rapidminer

Author : Markus Hofmann
ISBN : 9781482205503
Genre : Business & Economics
File Size : 67. 44 MB
Format : PDF, Kindle
Download : 541
Read : 675

Download Now


Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

Top Download:

Best Books