text analytics with python a practical real world approach to gaining actionable insights from your data

Download Book Text Analytics With Python A Practical Real World Approach To Gaining Actionable Insights From Your Data in PDF format. You can Read Online Text Analytics With Python A Practical Real World Approach To Gaining Actionable Insights From Your Data here in PDF, EPUB, Mobi or Docx formats.

Text Analytics With Python

Author : Dipanjan Sarkar
ISBN : 9781484223888
Genre : Computers
File Size : 36. 73 MB
Format : PDF, ePub, Docs
Download : 436
Read : 1287

Download Now


Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Advanced Computing Strategies For Engineering

Author : Ian F. C. Smith
ISBN : 9783319916385
Genre : Computers
File Size : 28. 67 MB
Format : PDF, ePub, Mobi
Download : 853
Read : 1132

Download Now


This double volume set ( LNAI 10863-10864) constitutes the refereed proceedings of the 25th International Workshop, EG-ICE 2018, held in Lausanne, Switzerland, in June 2018. The 58 papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on Advanced Computing in Engineering, Computer Supported Construction Management, Life-Cycle Design Support, Monitoring and Control Algorithms in Engineering, and BIM and Engineering Ontologies.

Python Social Media Analytics

Author : Siddhartha Chatterjee
ISBN : 9781787126756
Genre : Computers
File Size : 76. 51 MB
Format : PDF, Docs
Download : 875
Read : 593

Download Now


Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.

Learning Social Media Analytics With R

Author : Raghav Bali
ISBN : 9781787125469
Genre : Computers
File Size : 49. 35 MB
Format : PDF, ePub, Mobi
Download : 303
Read : 550

Download Now


Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.

Machine Learning In Java

Author : Bostjan Kaluza
ISBN : 9781784390365
Genre : Computers
File Size : 66. 83 MB
Format : PDF, ePub
Download : 928
Read : 1321

Download Now


Design, build, and deploy your own machine learning applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications Packed with practical advice and tips to help you get to grips with applied machine learning Who This Book Is For If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. You should be familiar with Java programming and data mining concepts to make the most of this book, but no prior experience with data mining packages is necessary. What You Will Learn Understand the basic steps of applied machine learning and how to differentiate among various machine learning approaches Discover key Java machine learning libraries, what each library brings to the table, and what kind of problems each are able to solve Learn how to implement classification, regression, and clustering Develop a sustainable strategy for customer retention by predicting likely churn candidates Build a scalable recommendation engine with Apache Mahout Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Write your own activity recognition model for eHealth applications using mobile sensors In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. Machine Learning in Java will provide you with the techniques and tools you need to quickly gain insight from complex data. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will explore related web resources and technologies that will help you take your learning to the next level. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. Style and approach This is a practical tutorial that uses hands-on examples to step through some real-world applications of machine learning. Without shying away from the technical details, you will explore machine learning with Java libraries using clear and practical examples. You will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process.

Python End To End Data Analysis

Author : Phuong Vothihong
ISBN : 9781788396547
Genre : Computers
File Size : 26. 76 MB
Format : PDF, Kindle
Download : 406
Read : 528

Download Now


Leverage the power of Python to clean, scrape, analyze, and visualize your data About This Book Clean, format, and explore your data using the popular Python libraries and get valuable insights from it Analyze big data sets; create attractive visualizations; manipulate and process various data types using NumPy, SciPy, and matplotlib; and more Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For This course is for developers, analysts, and data scientists who want to learn data analysis from scratch. This course will provide you with a solid foundation from which to analyze data with varying complexity. A working knowledge of Python (and a strong interest in playing with your data) is recommended. What You Will Learn Understand the importance of data analysis and master its processing steps Get comfortable using Python and its associated data analysis libraries such as Pandas, NumPy, and SciPy Clean and transform your data and apply advanced statistical analysis to create attractive visualizations Analyze images and time series data Mine text and analyze social networks Perform web scraping and work with different databases, Hadoop, and Spark Use statistical models to discover patterns in data Detect similarities and differences in data with clustering Work with Jupyter Notebook to produce publication-ready figures to be included in reports In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data present in the system. Python is a multi-domain, high-level, programming language that offers a range of tools and libraries suitable for all purposes, it has slowly evolved as one of the primary languages for data science. Have you ever imagined becoming an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? If yes, look no further, this is the course you need! In this course, we will get you started with Python data analysis by introducing the basics of data analysis and supported Python libraries such as matplotlib, NumPy, and pandas. Create visualizations by choosing color maps, different shapes, sizes, and palettes then delve into statistical data analysis using distribution algorithms and correlations. You'll then find your way around different data and numerical problems, get to grips with Spark and HDFS, and set up migration scripts for web mining. You'll be able to quickly and accurately perform hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. Finally, you will delve into advanced techniques such as performing regression, quantifying cause and effect using Bayesian methods, and discovering how to use Python's tools for supervised machine learning. The course provides you with highly practical content explaining data analysis with Python, from the following Packt books: Getting Started with Python Data Analysis. Python Data Analysis Cookbook. Mastering Python Data Analysis. By the end of this course, you will have all the knowledge you need to analyze your data with varying complexity levels, and turn it into actionable insights. Style and approach Learn Python data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. It offers you a useful way of analyzing the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of data analysis.

Machine Learning End To End Guide For Java Developers

Author : Richard M. Reese
ISBN : 9781788629409
Genre : Computers
File Size : 70. 99 MB
Format : PDF, ePub, Docs
Download : 905
Read : 1225

Download Now


Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. The next couple of sections cover applying machine learning methods using Java to a variety of chores including classifying, predicting, forecasting, market basket analysis, clustering stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, and deep learning. The last section highlights real-world test cases such as performing activity recognition, developing image recognition, text classification, and anomaly detection. The course includes premium content from three of our most popular books: Java for Data Science Machine Learning in Java Mastering Java Machine Learning On completion of this course, you will understand various machine learning techniques, different machine learning java algorithms you can use to gain data insights, building data models to analyze larger complex data sets, and incubating applications using Java and machine learning algorithms in the field of artificial intelligence. Style and approach This comprehensive course proceeds from being a tutorial to a practical guide, providing an introduction to machine learning and different machine learning techniques, exploring machine learning with Java libraries, and demonstrating real-world machine learning use cases using the Java platform.

Deep Learning Practical Neural Networks With Java

Author : Yusuke Sugomori
ISBN : 9781788471718
Genre : Computers
File Size : 63. 53 MB
Format : PDF, ePub, Mobi
Download : 986
Read : 989

Download Now


Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

Top Download:

Best Books