robust systems theory and applications adaptive and cognitive dynamic systems signal processing learning communications and control

Download Book Robust Systems Theory And Applications Adaptive And Cognitive Dynamic Systems Signal Processing Learning Communications And Control in PDF format. You can Read Online Robust Systems Theory And Applications Adaptive And Cognitive Dynamic Systems Signal Processing Learning Communications And Control here in PDF, EPUB, Mobi or Docx formats.

Control Of Complex Systems

Author : Kyriakos Vamvoudakis
ISBN : 9780128054376
Genre : Technology & Engineering
File Size : 21. 47 MB
Format : PDF, Docs
Download : 761
Read : 626

Download Now


In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: “Introduction and Background on Control Theory”, “Adaptive Control and Neuroscience”, “Adaptive Learning Algorithms”, “Cyber-Physical Systems and Cooperative Control”, “Applications”. The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete Includes chapters from several well-known professors and researchers that showcases their recent work Presents different state-of-the-art control approaches and theory for complex systems Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems

Adaptive Control Design And Analysis

Author : Gang Tao
ISBN : 0471274526
Genre : Science
File Size : 51. 27 MB
Format : PDF, Docs
Download : 255
Read : 1294

Download Now


Annotation "Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory." "As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike."--BOOK JACKET. Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.

Bayesian Signal Processing

Author : James V. Candy
ISBN : 9781119125471
Genre : Technology & Engineering
File Size : 33. 63 MB
Format : PDF, ePub
Download : 682
Read : 1242

Download Now


Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

Radio Resource Management In Multi Tier Cellular Wireless Networks

Author : Ekram Hossain
ISBN : 9781118502679
Genre : Technology & Engineering
File Size : 81. 91 MB
Format : PDF, ePub
Download : 612
Read : 258

Download Now


Providing an extensive overview of the radio resource management problem in femtocell networks, this invaluable book considers both code division multiple access femtocells and orthogonal frequency-division multiple access femtocells. In addition to incorporating current research on this topic, the book also covers technical challenges in femtocell deployment, provides readers with a variety of approaches to resource allocation and a comparison of their effectiveness, explains how to model various networks using Stochastic geometry and shot noise theory, and much more.

Data Variant Kernel Analysis

Author : Yuichi Motai
ISBN : 9781119019343
Genre : Computers
File Size : 33. 10 MB
Format : PDF, Kindle
Download : 952
Read : 519

Download Now


Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include data formations of offline, distributed, online, cloud, and longitudinal data, used for kernel analysis to classify and predict future state. Data-Variant Kernel Analysis: Surveys the kernel analysis in the traditionally developed machine learning techniques, such as Neural Networks (NN), Support Vector Machines (SVM), and Principal Component Analysis (PCA) Develops group kernel analysis with the distributed databases to compare speed and memory usages Explores the possibility of real-time processes by synthesizing offline and online databases Applies the assembled databases to compare cloud computing environments Examines the prediction of longitudinal data with time-sequential configurations Data-Variant Kernel Analysis is a detailed reference for graduate students as well as electrical and computer engineers interested in pattern analysis and its application in colon cancer detection.

Nonlinear Dynamical Systems

Author : Irwin W. Sandberg
ISBN : 0471349119
Genre : Computers
File Size : 77. 39 MB
Format : PDF, Kindle
Download : 479
Read : 443

Download Now


The first truly up-to-date look at the theory and capabilities of nonlinear dynamical systems that take the form of feedforward neural network structures Considered one of the most important types of structures in the study of neural networks and neural-like networks, feedforward networks incorporating dynamical elements have important properties and are of use in many applications. Specializing in experiential knowledge, a neural network stores and expands its knowledge base via strikingly human routes-through a learning process and information storage involving interconnection strengths known as synaptic weights. In Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, six leading authorities describe recent contributions to the development of an analytical basis for the understanding and use of nonlinear dynamical systems of the feedforward type, especially in the areas of control, signal processing, and time series analysis. Moving from an introductory discussion of the different aspects of feedforward neural networks, the book then addresses: * Classification problems and the related problem of approximating dynamic nonlinear input-output maps * The development of robust controllers and filters * The capability of neural networks to approximate functions and dynamic systems with respect to risk-sensitive error * Segmenting a time series It then sheds light on the application of feedforward neural networks to speech processing, summarizing speech-related techniques, and reviewing feedforward neural networks from the viewpoint of fundamental design issues. An up-to-date and authoritative look at the ever-widening technical boundaries and influence of neural networks in dynamical systems, this volume is an indispensable resource for researchers in neural networks and a reference staple for libraries.

Least Mean Square Adaptive Filters

Author : Simon Haykin
ISBN : 0471215708
Genre : Technology & Engineering
File Size : 83. 7 MB
Format : PDF, Kindle
Download : 105
Read : 919

Download Now


Edited by the original inventor of the technology. Includes contributions by the foremost experts in thefield. The only book to cover these topics together.

Adaptive Approximation Based Control

Author : Jay A. Farrell
ISBN : 9780471781806
Genre : Science
File Size : 71. 36 MB
Format : PDF, Docs
Download : 179
Read : 1243

Download Now


A highly accessible and unified approach to the design and analysis of intelligent control systems Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox. Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before. The authors provide readers with a thought-provoking framework for rigorously considering such questions as: * What properties should the function approximator have? * Are certain families of approximators superior to others? * Can the stability and the convergence of the approximator parameters be guaranteed? * Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects? * Can this approach handle significant changes in the dynamics due to such disruptions as system failure? * What types of nonlinear dynamic systems are amenable to this approach? * What are the limitations of adaptive approximation based control? Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.

Stable Adaptive Control And Estimation For Nonlinear Systems

Author : Jeffrey T. Spooner
ISBN : 9780471460978
Genre : Science
File Size : 29. 40 MB
Format : PDF, Kindle
Download : 488
Read : 785

Download Now


Includes a solution manual for problems. Provides MATLAB code for examples and solutions. Deals with robust systems in both theory and practice.

Handbook On Array Processing And Sensor Networks

Author : Simon Haykin
ISBN : 0470487054
Genre : Science
File Size : 59. 68 MB
Format : PDF, ePub, Docs
Download : 646
Read : 993

Download Now


A handbook on recent advancements and the state of the art in array processing and sensor Networks Handbook on Array Processing and Sensor Networks provides readers with a collection of tutorial articles contributed by world-renowned experts on recent advancements and the state of the art in array processing and sensor networks. Focusing on fundamental principles as well as applications, the handbook provides exhaustive coverage of: wavelets; spatial spectrum estimation; MIMO radio propagation; robustness issues in sensor array processing; wireless communications and sensing in multi-path environments using multi-antenna transceivers; implicit training and array processing for digital communications systems; unitary design of radar waveform diversity sets; acoustic array processing for speech enhancement; acoustic beamforming for hearing aid applications; undetermined blind source separation using acoustic arrays; array processing in astronomy; digital 3D/4D ultrasound imaging technology; self-localization of sensor networks; multi-target tracking and classification in collaborative sensor networks via sequential Monte Carlo; energy-efficient decentralized estimation; sensor data fusion with application to multi-target tracking; distributed algorithms in sensor networks; cooperative communications; distributed source coding; network coding for sensor networks; information-theoretic studies of wireless networks; distributed adaptive learning mechanisms; routing for statistical inference in sensor networks; spectrum estimation in cognitive radios; nonparametric techniques for pedestrian tracking in wireless local area networks; signal processing and networking via the theory of global games; biochemical transport modeling, estimation, and detection in realistic environments; and security and privacy for sensor networks. Handbook on Array Processing and Sensor Networks is the first book of its kind and will appeal to researchers, professors, and graduate students in array processing, sensor networks, advanced signal processing, and networking.

Top Download:

Best Books