riemannian geometry and geometric analysis universitext

Download Book Riemannian Geometry And Geometric Analysis Universitext in PDF format. You can Read Online Riemannian Geometry And Geometric Analysis Universitext here in PDF, EPUB, Mobi or Docx formats.

Riemannian Geometry And Geometric Analysis

Author : Jürgen Jost
ISBN : 9783319618609
Genre : Mathematics
File Size : 82. 42 MB
Format : PDF, ePub, Mobi
Download : 864
Read : 820

Download Now


This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

Riemannian Geometry And Geometric Analysis

Author : Jürgen Jost
ISBN : 9783642212987
Genre : Mathematics
File Size : 82. 75 MB
Format : PDF, ePub, Mobi
Download : 296
Read : 495

Download Now


This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH

Riemannian Geometry And Geometric Analysis

Author : Jürgen Jost
ISBN : 354077341X
Genre : Mathematics
File Size : 41. 37 MB
Format : PDF, Mobi
Download : 322
Read : 1018

Download Now


This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. This new edition introduces and explains the ideas of the parabolic methods that have recently found such spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discusses further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry.

Riemannian Geometry And Geometric Analysis

Author : Jürgen Jost
ISBN : 9783319618609
Genre : Mathematics
File Size : 86. 94 MB
Format : PDF, Kindle
Download : 941
Read : 1028

Download Now


This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

Compact Riemann Surfaces

Author : Jürgen Jost
ISBN : 9783662034460
Genre : Mathematics
File Size : 29. 88 MB
Format : PDF, ePub, Docs
Download : 313
Read : 723

Download Now


This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Postmodern Analysis

Author : Jürgen Jost
ISBN : 9783662053065
Genre : Mathematics
File Size : 54. 62 MB
Format : PDF, ePub
Download : 824
Read : 682

Download Now


What is the title of this book intended to signify, what connotations is the adjective "Postmodern" meant to carry? A potential reader will surely pose this question. To answer it, I should describe what distinguishes the approach to analysis presented here from what has been called "Modern Analysis" by its protagonists. "Modern Analysis" as represented in the works of the Bour baki group or in the textbooks by Jean Dieudonne is characterized by its systematic and axiomatic treatment and by its drive towards a high level of abstraction. Given the tendency of many prior treatises on analysis to degen erate into a collection of rather unconnected tricks to solve special problems, this definitely represented a healthy achievement. In any case, for the de velopment of a consistent and powerful mathematical theory, it seems to be necessary to concentrate solely on the internal problems and structures and to neglect the relations to other fields of scientific, even of mathematical study for a certain while. Almost complete isolation may be required to reach the level of intellectual elegance and perfection that only a good mathematical theory can acquire. However, once this level has been reached, it might be useful to open one's eyes again to the inspiration coming from concrete ex ternal problems.

Differential Geometry Lie Groups And Symmetric Spaces

Author : Sigurdur Helgason
ISBN : 0080873960
Genre : Mathematics
File Size : 49. 11 MB
Format : PDF
Download : 255
Read : 1188

Download Now


The present book is intended as a textbook and reference work on three topics in the title. Together with a volume in progress on "Groups and Geometric Analysis" it supersedes my "Differential Geometry and Symmetric Spaces," published in 1962. Since that time several branches of the subject, particularly the function theory on symmetric spaces, have developed substantially. I felt that an expanded treatment might now be useful.

Geometry And Physics

Author : Jürgen Jost
ISBN : 3642005411
Genre : Mathematics
File Size : 62. 77 MB
Format : PDF
Download : 291
Read : 666

Download Now


"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

Manifolds And Differential Geometry

Author : Jeffrey Marc Lee
ISBN : 9780821848159
Genre : Mathematics
File Size : 72. 94 MB
Format : PDF, Kindle
Download : 455
Read : 283

Download Now


Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

Function Theory Of Several Complex Variables

Author : Steven George Krantz
ISBN : 9780821827246
Genre : Mathematics
File Size : 58. 50 MB
Format : PDF
Download : 694
Read : 406

Download Now


The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with the more familiar theory of one complex variable. The main topics in the book include integral formulas, convexity and pseudoconvexity, methods from harmonic analysis, and several aspects of the $\overline{\partial}$ problem. Some further topics are zero sets of holomorphic functions, estimates, partial differential equations, approximation theory, the boundary behavior of holomorphic functions, inner functions, invariant metrics, and holomorphic mappings. While due attention is paid to algebraic aspects of several complex variables (sheaves, Cousin problems, etc.), the student with a background in real and complex variable theory, harmonic analysis, and differential equations will be most comfortable with this treatment. This book is suitable for a first graduate course in several complex variables.

Top Download:

Best Books