real and complex clifford analysis

Download Book Real And Complex Clifford Analysis in PDF format. You can Read Online Real And Complex Clifford Analysis here in PDF, EPUB, Mobi or Docx formats.

Real And Complex Clifford Analysis

Author : Sha Huang
ISBN : 9780387245362
Genre : Mathematics
File Size : 67. 37 MB
Format : PDF, Kindle
Download : 532
Read : 415

Download Now


Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.

Clifford Algebra And Spinor Valued Functions

Author : R. Delanghe
ISBN : 9789401129220
Genre : Mathematics
File Size : 49. 90 MB
Format : PDF
Download : 491
Read : 380

Download Now


This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.

Hypercomplex Analysis

Author : Irene Sabadini
ISBN : 9783764398934
Genre : Mathematics
File Size : 58. 92 MB
Format : PDF, ePub, Docs
Download : 359
Read : 543

Download Now


Contains selected papers from the ISAAC conference 2007 and invited contributions. This book covers various topics that represent the main streams of research in hypercomplex analysis as well as the expository articles. It is suitable for researchers and postgraduate students in various areas of mathematical analysis.

Clifford Algebras And Their Applications In Mathematical Physics

Author : John Ryan
ISBN : 9781461213741
Genre : Mathematics
File Size : 66. 86 MB
Format : PDF, Mobi
Download : 112
Read : 633

Download Now



Clifford Analysis And Its Applications

Author : F. Brackx
ISBN : 9789401008624
Genre : Mathematics
File Size : 57. 38 MB
Format : PDF, Mobi
Download : 549
Read : 562

Download Now


In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

Clifford Algebras And Their Applications In Mathematical Physics

Author : J.S.R. Chisholm
ISBN : 9789400947283
Genre : Mathematics
File Size : 67. 98 MB
Format : PDF, ePub
Download : 894
Read : 631

Download Now


William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

Clifford Algebras And Spinor Structures

Author : Rafal Ablamowicz
ISBN : 0792333667
Genre : Mathematics
File Size : 82. 33 MB
Format : PDF
Download : 588
Read : 380

Download Now


This volume introduces mathematicians and physicists to a crossing point of algebra, physics, differential geometry and complex analysis. The book follows the French tradition of Cartan, Chevalley and Crumeyrolle and summarizes Crumeyrolle's own work on exterior algebra and spinor structures. The depth and breadth of Crumeyrolle's research interests and influence in the field is investigated in a number of articles. Of interest to physicists is the modern presentation of Crumeyrolle's approach to Weyl spinors, and to his spinoriality groups, which are formulated with spinor operators of Kustaanheimo and Hestenes. The Dirac equation and Dirac operator are studied both from the complex analytic and differential geometric points of view, in the modern sense of Ryan and Trautman. For mathematicians and mathematical physicists whose research involves algebra, quantum mechanics and differential geometry.

Clifford Algebras

Author : Rafal Ablamowicz
ISBN : 9781461220442
Genre : Mathematics
File Size : 27. 75 MB
Format : PDF, Docs
Download : 978
Read : 457

Download Now


The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Clifford Analysis And Related Topics

Author : Paula Cerejeiras
ISBN : 9783030000493
Genre : Mathematics
File Size : 26. 99 MB
Format : PDF, ePub, Mobi
Download : 745
Read : 682

Download Now


This book, intended to commemorate the work of Paul Dirac, highlights new developments in the main directions of Clifford analysis. Just as complex analysis is based on the algebra of the complex numbers, Clifford analysis is based on the geometric Clifford algebras. Many methods and theorems from complex analysis generalize to higher dimensions in various ways. However, many new features emerge in the process, and much of this work is still in its infancy. Some of the leading mathematicians working in this field have contributed to this book in conjunction with “Clifford Analysis and Related Topics: a conference in honor of Paul A.M. Dirac,” which was held at Florida State University, Tallahassee, on December 15-17, 2014. The content reflects talks given at the conference, as well as contributions from mathematicians who were invited but were unable to attend. Hence much of the mathematics presented here is not only highly topical, but also cannot be found elsewhere in print. Given its scope, the book will be of interest to mathematicians and physicists working in these areas, as well as students seeking to catch up on the latest developments.

Clifford Algebras In Analysis And Related Topics

Author : John Ryan
ISBN : 0849384818
Genre : Mathematics
File Size : 27. 29 MB
Format : PDF, ePub, Mobi
Download : 892
Read : 227

Download Now


This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.

Top Download:

Best Books