probability models springer undergraduate mathematics series

Download Book Probability Models Springer Undergraduate Mathematics Series in PDF format. You can Read Online Probability Models Springer Undergraduate Mathematics Series here in PDF, EPUB, Mobi or Docx formats.

Probability Models

Author : John Haigh
ISBN : 9781447153436
Genre : Mathematics
File Size : 67. 1 MB
Format : PDF, ePub, Docs
Download : 808
Read : 473

Download Now


The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.

An Introduction To Probabilistic Modeling

Author : Pierre Bremaud
ISBN : 9781461210467
Genre : Mathematics
File Size : 31. 1 MB
Format : PDF, Docs
Download : 575
Read : 742

Download Now


Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.

Regression

Author : N. H. Bingham
ISBN : 1848829698
Genre : Mathematics
File Size : 53. 34 MB
Format : PDF, ePub
Download : 594
Read : 1306

Download Now


Regression is the branch of Statistics in which a dependent variable of interest is modelled as a linear combination of one or more predictor variables, together with a random error. The subject is inherently two- or higher- dimensional, thus an understanding of Statistics in one dimension is essential. Regression: Linear Models in Statistics fills the gap between introductory statistical theory and more specialist sources of information. In doing so, it provides the reader with a number of worked examples, and exercises with full solutions. The book begins with simple linear regression (one predictor variable), and analysis of variance (ANOVA), and then further explores the area through inclusion of topics such as multiple linear regression (several predictor variables) and analysis of covariance (ANCOVA). The book concludes with special topics such as non-parametric regression and mixed models, time series, spatial processes and design of experiments. Aimed at 2nd and 3rd year undergraduates studying Statistics, Regression: Linear Models in Statistics requires a basic knowledge of (one-dimensional) Statistics, as well as Probability and standard Linear Algebra. Possible companions include John Haigh’s Probability Models, and T. S. Blyth & E.F. Robertsons’ Basic Linear Algebra and Further Linear Algebra.

Basic Probability Theory With Applications

Author : Mario Lefebvre
ISBN : 9780387749952
Genre : Mathematics
File Size : 65. 21 MB
Format : PDF
Download : 185
Read : 564

Download Now


The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.

Measure Integral And Probability

Author : Marek Capinski
ISBN : 9781447136316
Genre : Mathematics
File Size : 82. 11 MB
Format : PDF, Mobi
Download : 370
Read : 1268

Download Now


This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Basic Stochastic Processes

Author : Zdzislaw Brzezniak
ISBN : 9781447105336
Genre : Mathematics
File Size : 33. 9 MB
Format : PDF, Docs
Download : 177
Read : 890

Download Now


Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Understanding Markov Chains

Author : Nicolas Privault
ISBN : 9789814451512
Genre : Mathematics
File Size : 31. 62 MB
Format : PDF, Mobi
Download : 670
Read : 1281

Download Now


This book provides an undergraduate introduction to discrete and continuous-time Markov chains and their applications. A large focus is placed on the first step analysis technique and its applications to average hitting times and ruin probabilities. Classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes, are also covered. Two major examples (gambling processes and random walks) are treated in detail from the beginning, before the general theory itself is presented in the subsequent chapters. An introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times is also provided, and the book includes a chapter on spatial Poisson processes with some recent results on moment identities and deviation inequalities for Poisson stochastic integrals. The concepts presented are illustrated by examples and by 72 exercises and their complete solutions.

Discrete Probability Models And Methods

Author : Pierre Brémaud
ISBN : 9783319434766
Genre : Mathematics
File Size : 28. 77 MB
Format : PDF, ePub
Download : 469
Read : 995

Download Now


The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.

Explorations In Monte Carlo Methods

Author : Ronald W. Shonkwiler
ISBN : 9780387878379
Genre : Mathematics
File Size : 62. 92 MB
Format : PDF, ePub
Download : 532
Read : 1069

Download Now


Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

Introduction To Reliability Analysis

Author : Shelemyahu Zacks
ISBN : 9781461228547
Genre : Mathematics
File Size : 29. 83 MB
Format : PDF, ePub, Mobi
Download : 184
Read : 211

Download Now


Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.

Top Download:

Best Books