pattern recognition and neural networks

Download Book Pattern Recognition And Neural Networks in PDF format. You can Read Online Pattern Recognition And Neural Networks here in PDF, EPUB, Mobi or Docx formats.

Pattern Recognition And Neural Networks

Author : Brian D. Ripley
ISBN : 0521717701
Genre : Computers
File Size : 57. 20 MB
Format : PDF, Mobi
Download : 985
Read : 341

Download Now

Ripley brings together two crucial ideas in pattern recognition: statistical methods and machine learning via neural networks. He brings unifying principles to the fore, and reviews the state of the subject. Ripley also includes many examples to illustrate real problems in pattern recognition and how to overcome them.

Neural Networks For Pattern Recognition

Author : Christopher M. Bishop
ISBN : 9780198538646
Genre : Computers
File Size : 50. 45 MB
Format : PDF, Docs
Download : 998
Read : 230

Download Now

`Readers will emerge with a rigorous statistical grounding in the theory of how to construct and train neural networks in pattern recognition' New Scientist

Pattern Recognition With Neural Networks In C

Author : Abhijit S. Pandya
ISBN : 0849394627
Genre : Computers
File Size : 64. 14 MB
Format : PDF, Docs
Download : 452
Read : 565

Download Now

The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.

Neural Networks For Pattern Recognition

Author : Albert Nigrin
ISBN : 0262140543
Genre : Computers
File Size : 46. 36 MB
Format : PDF, Mobi
Download : 404
Read : 862

Download Now

In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before.

A Statistical Approach To Neural Networks For Pattern Recognition

Author : Robert A. Dunne
ISBN : 0470148144
Genre : Mathematics
File Size : 60. 3 MB
Format : PDF, ePub
Download : 475
Read : 1248

Download Now

An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as: How robust is the model to outliers? Could the model be made more robust? Which points will have a high leverage? What are good starting values for the fitting algorithm? Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature. Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Neural Networks And Pattern Recognition Edition En Anglais

Author : Omid Omidvar
ISBN : 0125264208
Genre : Computers
File Size : 82. 94 MB
Format : PDF, Mobi
Download : 107
Read : 1250

Download Now

Pulse-coupled neural networks; A neural network model for optical flow computation; Temporal pattern matching using an artificial neural network; Patterns of dynamic activity and timing in neural network processing; A macroscopic model of oscillation in ensembles of inhibitory and excitatory neurons; Finite state machines and recurrent neural networks: automata and dynamical systems approaches; biased random-waldk learning; a neurobiological correlate to trial-and-error; Using SONNET 1 to segment continuous sequences of items; On the use of high-level petri nets in the modeling of biological neural networks; Locally recurrent networks: the gmma operator, properties, and extensions.

From Statistics To Neural Networks

Author : Vladimir Cherkassky
ISBN : 9783642791192
Genre : Computers
File Size : 40. 44 MB
Format : PDF, Kindle
Download : 668
Read : 1162

Download Now

The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.

Pattern Recognition By Self Organizing Neural Networks

Author : Gail A. Carpenter
ISBN : 0262031760
Genre : Computers
File Size : 84. 73 MB
Format : PDF, Docs
Download : 640
Read : 568

Download Now

Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.

Artificial Neural Networks And Statistical Pattern Recognition

Author : I.K. Sethi
ISBN : 9781483297873
Genre : Computers
File Size : 51. 21 MB
Format : PDF, ePub, Docs
Download : 892
Read : 886

Download Now

With the growing complexity of pattern recognition related problems being solved using Artificial Neural Networks, many ANN researchers are grappling with design issues such as the size of the network, the number of training patterns, and performance assessment and bounds. These researchers are continually rediscovering that many learning procedures lack the scaling property; the procedures simply fail, or yield unsatisfactory results when applied to problems of bigger size. Phenomena like these are very familiar to researchers in statistical pattern recognition (SPR), where the curse of dimensionality is a well-known dilemma. Issues related to the training and test sample sizes, feature space dimensionality, and the discriminatory power of different classifier types have all been extensively studied in the SPR literature. It appears however that many ANN researchers looking at pattern recognition problems are not aware of the ties between their field and SPR, and are therefore unable to successfully exploit work that has already been done in SPR. Similarly, many pattern recognition and computer vision researchers do not realize the potential of the ANN approach to solve problems such as feature extraction, segmentation, and object recognition. The present volume is designed as a contribution to the greater interaction between the ANN and SPR research communities.

Adaptive Pattern Recognition And Neural Networks

Author : Yoh-Han Pao
ISBN : UOM:39015012010578
Genre : Computers
File Size : 85. 82 MB
Format : PDF, ePub, Docs
Download : 434
Read : 307

Download Now

Top Download:

Best Books