normal forms melnikov functions and bifurcations of limit cycles 181 applied mathematical sciences

Download Book Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles 181 Applied Mathematical Sciences in PDF format. You can Read Online Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles 181 Applied Mathematical Sciences here in PDF, EPUB, Mobi or Docx formats.

Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles

Author : Maoan Han
ISBN : 9781447129189
Genre : Mathematics
File Size : 27. 2 MB
Format : PDF, Kindle
Download : 171
Read : 1085

Download Now


Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.

Dynamical Systems With Applications Using Mathematica

Author : Stephen Lynch
ISBN : 9783319614854
Genre : Mathematics
File Size : 26. 14 MB
Format : PDF, ePub
Download : 608
Read : 1228

Download Now


This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.

Differential Equations And Dynamical Systems

Author : Lawrence Perko
ISBN : 9781461300038
Genre : Mathematics
File Size : 76. 41 MB
Format : PDF
Download : 658
Read : 664

Download Now


This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Nonlinear Dynamics And Chaos

Author : Steven H. Strogatz
ISBN : 9780429961113
Genre : Mathematics
File Size : 34. 81 MB
Format : PDF, Kindle
Download : 178
Read : 481

Download Now


This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Introduction To Applied Nonlinear Dynamical Systems And Chaos

Author : Stephen Wiggins
ISBN : 9781475740677
Genre : Mathematics
File Size : 65. 94 MB
Format : PDF, Docs
Download : 543
Read : 1013

Download Now


This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

Introduction To Mechanics And Symmetry

Author : J.E. Marsden
ISBN : 9780387217925
Genre : Science
File Size : 31. 6 MB
Format : PDF, Kindle
Download : 731
Read : 427

Download Now


A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.

Ordinary Differential Equations With Applications

Author : Carmen Chicone
ISBN : 9780387357942
Genre : Mathematics
File Size : 64. 14 MB
Format : PDF
Download : 722
Read : 343

Download Now


Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.

Boundary Integral Equations

Author : George Hsiao
ISBN : 3540685456
Genre : Mathematics
File Size : 68. 78 MB
Format : PDF, Kindle
Download : 533
Read : 1247

Download Now


This book is devoted to the mathematical foundation of boundary integral equations. The combination of ?nite element analysis on the boundary with these equations has led to very e?cient computational tools, the boundary element methods (see e.g., the authors [139] and Schanz and Steinbach (eds.) [267]). Although we do not deal with the boundary element discretizations in this book, the material presented here gives the mathematical foundation of these methods. In order to avoid over generalization we have con?ned ourselves to the treatment of elliptic boundary value problems. The central idea of eliminating the ?eld equations in the domain and - ducing boundary value problems to equivalent equations only on the bou- ary requires the knowledge of corresponding fundamental solutions, and this idea has a long history dating back to the work of Green [107] and Gauss [95, 96]. Today the resulting boundary integral equations still serve as a major tool for the analysis and construction of solutions to boundary value problems.

Chaotic Transport In Dynamical Systems

Author : Stephen Wiggins
ISBN : 9781475738964
Genre : Mathematics
File Size : 45. 13 MB
Format : PDF
Download : 390
Read : 1207

Download Now


Provides a new and more realistic framework for describing the dynamics of non-linear systems. A number of issues arising in applied dynamical systems from the viewpoint of problems of phase space transport are raised in this monograph. Illustrating phase space transport problems arising in a variety of applications that can be modeled as time-periodic perturbations of planar Hamiltonian systems, the book begins with the study of transport in the associated two-dimensional Poincaré Map. This serves as a starting point for the further motivation of the transport issues through the development of ideas in a non-perturbative framework with generalizations to higher dimensions as well as more general time dependence. A timely and important contribution to those concerned with the applications of mathematics.

Normal Modes And Localization In Nonlinear Systems

Author : Alexander F. Vakakis
ISBN : 9789401724524
Genre : Science
File Size : 23. 46 MB
Format : PDF, Docs
Download : 627
Read : 1131

Download Now


The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.

Top Download:

Best Books