natural language annotation for machine learning

Download Book Natural Language Annotation For Machine Learning in PDF format. You can Read Online Natural Language Annotation For Machine Learning here in PDF, EPUB, Mobi or Docx formats.

Natural Language Annotation For Machine Learning

Author : James Pustejovsky
ISBN : 9781449359768
Genre : Computers
File Size : 52. 76 MB
Format : PDF
Download : 968
Read : 1175

Download Now


Create your own natural language training corpus for machine learning. Whether you’re working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle—the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don’t need any programming or linguistics experience to get started. Using detailed examples at every step, you’ll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project. Define a clear annotation goal before collecting your dataset (corpus) Learn tools for analyzing the linguistic content of your corpus Build a model and specification for your annotation project Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework Create a gold standard corpus that can be used to train and test ML algorithms Select the ML algorithms that will process your annotated data Evaluate the test results and revise your annotation task Learn how to use lightweight software for annotating texts and adjudicating the annotations This book is a perfect companion to O’Reilly’s Natural Language Processing with Python.

Modern Computational Models Of Semantic Discovery In Natural Language

Author : Žižka, Jan
ISBN : 9781466686915
Genre : Computers
File Size : 70. 93 MB
Format : PDF
Download : 151
Read : 1253

Download Now


Language—that is, oral or written content that references abstract concepts in subtle ways—is what sets us apart as a species, and in an age defined by such content, language has become both the fuel and the currency of our modern information society. This has posed a vexing new challenge for linguists and engineers working in the field of language-processing: how do we parse and process not just language itself, but language in vast, overwhelming quantities? Modern Computational Models of Semantic Discovery in Natural Language compiles and reviews the most prominent linguistic theories into a single source that serves as an essential reference for future solutions to one of the most important challenges of our age. This comprehensive publication benefits an audience of students and professionals, researchers, and practitioners of linguistics and language discovery. This book includes a comprehensive range of topics and chapters covering digital media, social interaction in online environments, text and data mining, language processing and translation, and contextual documentation, among others.

Handbook Of Linguistic Annotation

Author : Nancy Ide
ISBN : 9789402408812
Genre : Language Arts & Disciplines
File Size : 77. 58 MB
Format : PDF, ePub, Mobi
Download : 449
Read : 369

Download Now


This handbook offers a thorough treatment of the science of linguistic annotation. Leaders in the field guide the reader through the process of modeling, creating an annotation language, building a corpus and evaluating it for correctness. Essential reading for both computer scientists and linguistic researchers.Linguistic annotation is an increasingly important activity in the field of computational linguistics because of its critical role in the development of language models for natural language processing applications. Part one of this book covers all phases of the linguistic annotation process, from annotation scheme design and choice of representation format through both the manual and automatic annotation process, evaluation, and iterative improvement of annotation accuracy. The second part of the book includes case studies of annotation projects across the spectrum of linguistic annotation types, including morpho-syntactic tagging, syntactic analyses, a range of semantic analyses (semantic roles, named entities, sentiment and opinion), time and event and spatial analyses, and discourse level analyses including discourse structure, co-reference, etc. Each case study addresses the various phases and processes discussed in the chapters of part one.

Collaborative Annotation For Reliable Natural Language Processing

Author : Kar?n Fort
ISBN : 9781848219045
Genre : Computers
File Size : 77. 52 MB
Format : PDF, Mobi
Download : 491
Read : 1239

Download Now


This book presents a unique opportunity for constructing a consistent image of collaborative manual annotation for Natural Language Processing (NLP). NLP has witnessed two major evolutions in the past 25 years: firstly, the extraordinary success of machine learning, which is now, for better or for worse, overwhelmingly dominant in the field, and secondly, the multiplication of evaluation campaigns or shared tasks. Both involve manually annotated corpora, for the training and evaluation of the systems. These corpora have progressively become the hidden pillars of our domain, providing food for our hungry machine learning algorithms and reference for evaluation. Annotation is now the place where linguistics hides in NLP. However, manual annotation has largely been ignored for some time, and it has taken a while even for annotation guidelines to be recognized as essential. Although some efforts have been made lately to address some of the issues presented by manual annotation, there has still been little research done on the subject. This book aims to provide some useful insights into the subject. Manual corpus annotation is now at the heart of NLP, and is still largely unexplored. There is a need for manual annotation engineering (in the sense of a precisely formalized process), and this book aims to provide a first step towards a holistic methodology, with a global view on annotation.

Web And Network Data Science

Author : Thomas W. Miller
ISBN : 9780133887648
Genre : Computers
File Size : 45. 92 MB
Format : PDF, ePub, Docs
Download : 192
Read : 1047

Download Now


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

The Handbook Of Computational Linguistics And Natural Language Processing

Author : Alexander Clark
ISBN : 9781118448670
Genre : Language Arts & Disciplines
File Size : 60. 32 MB
Format : PDF, Mobi
Download : 992
Read : 643

Download Now


This comprehensive reference work provides an overview of theconcepts, methodologies, and applications in computationallinguistics and natural language processing (NLP). Features contributions by the top researchers in the field,reflecting the work that is driving the discipline forward Includes an introduction to the major theoretical issues inthese fields, as well as the central engineering applications thatthe work has produced Presents the major developments in an accessible way,explaining the close connection between scientific understanding ofthe computational properties of natural language and the creationof effective language technologies Serves as an invaluable state-of-the-art reference source forcomputational linguists and software engineers developing NLPapplications in industrial research and development labs ofsoftware companies

Modeling Techniques In Predictive Analytics With Python And R

Author : Thomas W. Miller
ISBN : 9780133892147
Genre : Computers
File Size : 50. 21 MB
Format : PDF, ePub, Mobi
Download : 168
Read : 338

Download Now


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Modeling Techniques In Predictive Analytics

Author : Thomas W. Miller
ISBN : 9780133886191
Genre : Computers
File Size : 84. 94 MB
Format : PDF, ePub, Mobi
Download : 242
Read : 1127

Download Now


To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Author : ماري شيلي
ISBN : 9796500295961
Genre : Literary Collections
File Size : 84. 77 MB
Format : PDF
Download : 314
Read : 1191

Download Now


يعد مسار هذه الرواية بالتحديد أكثر تعقيدًا من غيرها، فقد طرحت شِلي فيها أفكارًا جريئة جديدة بالنسبة لعصرها عن الإبداع عندما يتخطى حدود الطبيعة، وقد تعاظَم هذا المسار واستقلَّ بشكلٍ ما عن الرواية نفسها، وصار في حَدّ ذاته نوعًا من المجاز والأسطورة شَقّ لنفسه طريقًا في الفنون الأخرى مثل السينما والمسرح والكاريكاتور والكومِكس، وصار اسم فرانكنشتاين مُرادِفًا لكل إبداع عندما يصير هوسًا يَجلِب عواقب وخيمة على المُبدِع والعالم، ومرادفًا للوحشيَّة وقد تحرَّرَت من عِقالها.

Handbook Of Natural Language Processing Second Edition

Author : Nitin Indurkhya
ISBN : 142008593X
Genre : Computers
File Size : 77. 59 MB
Format : PDF
Download : 815
Read : 726

Download Now


The Handbook of Natural Language Processing, Second Edition presents practical tools and techniques for implementing natural language processing in computer systems. Along with removing outdated material, this edition updates every chapter and expands the content to include emerging areas, such as sentiment analysis. New to the Second Edition Greater prominence of statistical approaches New applications section Broader multilingual scope to include Asian and European languages, along with English An actively maintained wiki (http://handbookofnlp.cse.unsw.edu.au) that provides online resources, supplementary information, and up-to-date developments Divided into three sections, the book first surveys classical techniques, including both symbolic and empirical approaches. The second section focuses on statistical approaches in natural language processing. In the final section of the book, each chapter describes a particular class of application, from Chinese machine translation to information visualization to ontology construction to biomedical text mining. Fully updated with the latest developments in the field, this comprehensive, modern handbook emphasizes how to implement practical language processing tools in computational systems.

Top Download:

Best Books