model theory encyclopedia of mathematics and its applications

Download Book Model Theory Encyclopedia Of Mathematics And Its Applications in PDF format. You can Read Online Model Theory Encyclopedia Of Mathematics And Its Applications here in PDF, EPUB, Mobi or Docx formats.

Model Theory

Author : Wilfrid Hodges
ISBN : 0521304423
Genre : Mathematics
File Size : 49. 63 MB
Format : PDF, Mobi
Download : 684
Read : 166

Download Now


Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.

Recursive Model Theory

Author :
ISBN : 0080533698
Genre : Computers
File Size : 62. 26 MB
Format : PDF
Download : 550
Read : 1257

Download Now


Recursive Model Theory

Motivic Integration And Its Interactions With Model Theory And Non Archimedean Geometry

Author : Raf Cluckers
ISBN : 9781139499798
Genre : Mathematics
File Size : 21. 43 MB
Format : PDF, ePub, Mobi
Download : 768
Read : 1060

Download Now


The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This first volume contains introductory texts on the model theory of valued fields, different approaches to non-Archimedean geometry, and motivic integration on algebraic varieties and non-Archimedean spaces.

Logic And Its Applications

Author : Andreas Blass
ISBN : 9780821834749
Genre : Mathematics
File Size : 71. 27 MB
Format : PDF, Mobi
Download : 987
Read : 279

Download Now


Two conferences, Logic and Its Applications in Algebra and Geometry and Combinatorial Set Theory, Excellent Classes, and Schanuel Conjecture, were held at the University of Michigan (Ann Arbor). These events brought together model theorists and set theorists working in these areas. This volume is the result of those meetings. It is suitable for graduate students and researchers working in mathematical logic.

The Princeton Companion To Mathematics

Author : Timothy Gowers
ISBN : 1400830397
Genre : Mathematics
File Size : 30. 29 MB
Format : PDF, ePub, Docs
Download : 590
Read : 441

Download Now


This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors incude: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, Doron Zeilberger

Quantum Field Theory For Mathematicians

Author : Robin Ticciati
ISBN : 052163265X
Genre : Mathematics
File Size : 80. 25 MB
Format : PDF, Kindle
Download : 320
Read : 282

Download Now


This should be a useful reference for anybody with an interest in quantum theory.

Purity Spectra And Localisation

Author : Mike Prest
ISBN : 9780521873086
Genre : Mathematics
File Size : 27. 79 MB
Format : PDF, ePub
Download : 928
Read : 1062

Download Now


A unified, coherent account of the algebraic aspects and uses of the Ziegler spectrum. It may be used as an introductory graduate-level text, providing relevant background material and a wealth of illustrated examples. An extensive index and thorough referencing also make this book an ideal reference.

Relational Mathematics

Author : Gunther Schmidt
ISBN : 9780521762687
Genre : Computers
File Size : 42. 43 MB
Format : PDF
Download : 173
Read : 502

Download Now


A modern, comprehensive 2010 overview providing an easy introduction for applied scientists who are not versed in mathematics.

Combinatorics Ancient Modern

Author : Robin Wilson
ISBN : 9780191630637
Genre : Mathematics
File Size : 30. 80 MB
Format : PDF, Mobi
Download : 985
Read : 837

Download Now


Who first presented Pascal's triangle? (It was not Pascal.) Who first presented Hamiltonian graphs? (It was not Hamilton.) Who first presented Steiner triple systems? (It was not Steiner.) The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: 1) it constitutes the first book-length survey of the history of combinatorics; and 2) it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction by Donald E. Knuth to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler's contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections by the distinguished combinatorialist, Peter J. Cameron. This book is not expected to be read from cover to cover, although it can be. Rather, it aims to serve as a valuable resource to a variety of audiences. Combinatorialists with little or no knowledge about the development of their subject will find the historical treatment stimulating. A historian of mathematics will view its assorted surveys as an encouragement for further research in combinatorics. The more general reader will discover an introduction to a fascinating and too little known subject that continues to stimulate and inspire the work of scholars today.

Physical Combinatorics

Author : 正樹·柏原
ISBN : 0817641750
Genre : Mathematics
File Size : 33. 55 MB
Format : PDF, Mobi
Download : 288
Read : 640

Download Now


"Taking into account the various criss-crossing among mathematical subjects, Physical Combinatorics presents new results and exciting ideas from three viewpoints: representation theory, integrable models, and combinatorics." "This volume will be of interest to mathematical physicists and graduate students in the above-mentioned fields."--BOOK JACKET.

Top Download:

Best Books