mixed effects models in s and s plus statistics and computing

Download Book Mixed Effects Models In S And S Plus Statistics And Computing in PDF format. You can Read Online Mixed Effects Models In S And S Plus Statistics And Computing here in PDF, EPUB, Mobi or Docx formats.

Mixed Effects Models In S And S Plus

Author : José C. Pinheiro
ISBN : 9781441903174
Genre : Computers
File Size : 64. 84 MB
Format : PDF, Kindle
Download : 852
Read : 713

Download Now


R, linear models, random, fixed, data, analysis, fit.

Mixed Effects Models In S And S Plus

Author : José Pinheiro
ISBN : 9780387227474
Genre : Computers
File Size : 83. 75 MB
Format : PDF
Download : 772
Read : 930

Download Now


An overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. The authors present a unified model-building strategy for both models and apply this to the analysis of over 20 real datasets from a wide variety of areas, including pharmacokinetics, agriculture, and manufacturing. Much emphasis is placed on the use of graphical displays at the various phases of the model-building process, starting with exploratory plots of the data and concluding with diagnostic plots to assess the adequacy of a fitted model. The NLME library for analyzing mixed-effects models in S and S-PLUS, developed by the authors, provides the underlying software for implementing the methods presented. This balanced mix of real data examples, modeling software, and theory makes the book a useful reference for practitioners who use, or intend to use, mixed-effects models in their data analyses. It can also be used as a text for a one-semester graduate-level applied course.

Mixed Effects Models In S And S Plus

Author : José Pinheiro
ISBN : 9780387989570
Genre : Computers
File Size : 84. 10 MB
Format : PDF, ePub, Docs
Download : 303
Read : 919

Download Now


to follow.

Linear Mixed Effects Models Using R

Author : Andrzej Gałecki
ISBN : 9781461439004
Genre : Mathematics
File Size : 64. 54 MB
Format : PDF, Docs
Download : 198
Read : 590

Download Now


Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.

The R Book

Author : Michael J. Crawley
ISBN : 9781118448960
Genre : Mathematics
File Size : 77. 67 MB
Format : PDF, ePub, Mobi
Download : 338
Read : 1137

Download Now


Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Modern Applied Statistics With S Plus

Author : William N. Venables
ISBN : 9781475727197
Genre : Mathematics
File Size : 27. 92 MB
Format : PDF, ePub, Mobi
Download : 341
Read : 891

Download Now


A guide to using the power of S-PLUS to perform statistical analyses, providing both an introduction to the program and a course in modern statistical methods. Readers are assumed to have a basic grounding in statistics, thus the book is intended for would-be users, as well as students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets, with many of the methods discussed being modern approaches to topics such as linear and non-linear regression models, robust and smooth regression methods, survival analysis, multivariate analysis, tree-based methods, time series, spatial statistics, and classification. This second edition is intended for users of S-PLUS 3.3, or later, and covers both Windows and UNIX. It treats the recent developments in graphics and new statistical functionality, including bootstraping, mixed effects linear and non-linear models, factor analysis, and regression with autocorrelated errors. The authors have written several software libraries which enhance S-PLUS, and these, plus all the datasets used, are available on the Internet.

Introductory Statistics With R

Author : Peter Dalgaard
ISBN : 9780387790541
Genre : Mathematics
File Size : 23. 89 MB
Format : PDF, Docs
Download : 283
Read : 1206

Download Now


This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Linear Mixed Models

Author : Brady T. West
ISBN : 9781466560994
Genre : Mathematics
File Size : 67. 48 MB
Format : PDF
Download : 731
Read : 1093

Download Now


Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM. New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggested approaches to writing simulations Use of the lmer() function in the lme4 R package New sections on fitting LMMs to complex sample survey data and Bayesian approaches to making inferences based on LMMs Updated graphical procedures in the software packages Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options More practical recommendations on using the software for analysis A new R package (WWGbook) that contains all of the data sets used in the examples Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.

Growth Curve Analysis And Visualization Using R

Author : Daniel Mirman
ISBN : 9781315360331
Genre : Mathematics
File Size : 74. 14 MB
Format : PDF, ePub
Download : 976
Read : 254

Download Now


Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author’s website.

Statistical Computing

Author : Michael J. Crawley
ISBN : 0471560405
Genre : Computers
File Size : 88. 75 MB
Format : PDF, Kindle
Download : 527
Read : 695

Download Now


Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. * Extensive coverage of basic, intermediate and advanced statistical methods * Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages * Emphasis is on graphical data inspection, parameter estimation and model criticism * Features hundreds of worked examples to illustrate the techniques described * Accessible to scientists from a large number of disciplines with minimal statistical knowledge * Written by a leading figure in the field, who runs a number of successful international short courses * Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.

Top Download:

Best Books