microfluidics and nanofluidics handbook fabrication implementation and applications

Download Book Microfluidics And Nanofluidics Handbook Fabrication Implementation And Applications in PDF format. You can Read Online Microfluidics And Nanofluidics Handbook Fabrication Implementation And Applications here in PDF, EPUB, Mobi or Docx formats.

Microfluidics And Nanofluidics Handbook

Author : Sushanta K. Mitra
ISBN : 9781439816738
Genre : Science
File Size : 41. 70 MB
Format : PDF, Docs
Download : 749
Read : 563

Download Now


The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals.

Microfluidics And Nanofluidics Handbook

Author : Sushanta K. Mitra
ISBN : 1138072389
Genre :
File Size : 64. 60 MB
Format : PDF, Docs
Download : 626
Read : 179

Download Now


The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals.

Microfluidics And Nanofluidics Handbook 2 Volume Set

Author : Sushanta K. Mitra
ISBN : 1439816719
Genre : Technology & Engineering
File Size : 60. 31 MB
Format : PDF, Docs
Download : 254
Read : 758

Download Now


The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Highlights Discusses basic microbiology and chemistry related to microfluidics Explains fabrication techniques Emphasizes applications of microfluidics in the energy sector Describes micro-fuel cells and lab-on-a-chip Presents example tables, graphs, and equations Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fundamental science background that are required for the study of microfluidics and nanofluidics. Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods, followed by chapters on fabrications and other applications, ranging from aerospace to biological systems. Both volumes include as much interdisciplinary knowledge as possible to reflect the inherent nature of this area, making them valuable to students and practitioners.

Microfluidics And Nanofluidics

Author : Clement Kleinstreuer
ISBN : 9781118415276
Genre : Science
File Size : 51. 48 MB
Format : PDF, Mobi
Download : 122
Read : 1332

Download Now


Fluidics originated as the description of pneumatic and hydraulic control systems, where fluids were employed (instead of electric currents) for signal transfer and processing. Microfluidics and Nanofluidics: Theory and Selected Applications offers an accessible, broad-based coverage of the basics through advanced applications of microfluidics and nanofluidics. It is essential reading for upper-level undergraduates and graduate students in engineering and professionals in industry.

Microfluidics And Nanofluidics Handbook Two Volume Set

Author : Sushanta K. Mitra
ISBN : 9781466515741
Genre : Technology & Engineering
File Size : 42. 41 MB
Format : PDF, ePub
Download : 713
Read : 1098

Download Now


The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Highlights Discusses basic microbiology and chemistry related to microfluidics Explains fabrication techniques Emphasizes applications of microfluidics in the energy sector Describes micro-fuel cells and lab-on-a-chip Presents example tables, graphs, and equations Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fundamental science background that are required for the study of microfluidics and nanofluidics. Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods, followed by chapters on fabrications and other applications, ranging from aerospace to biological systems. Both volumes include as much interdisciplinary knowledge as possible to reflect the inherent nature of this area, making them valuable to students and practitioners.

Lab On A Chip Technology Fabrication And Microfluidics

Author : K. E. Herold
ISBN : 9781904455462
Genre : Science
File Size : 80. 18 MB
Format : PDF, Kindle
Download : 182
Read : 885

Download Now


Lab-on-a-Chip (LOC) devices integrate and scale down laboratory functions and processes to a miniaturized chip format. Many LOC devices are used in a wide array of biomedical and other analytical applications including rapid pathogen detection, clinical diagnosis, forensic science, electrophoresis, flow cytometry, blood chemistry analysis, protein analysis, and DNA analysis. LOC devices can be fabricated from many types of material including various polymers, glass, or silicon - or combinations of these materials. A broad variety of fabrication technologies are used for LOC device fabrication. LOC systems have several common features including microfluidics and sensing capabilities. Microfluidics deals with fluid flow in tiny channels using flow control devices (e.g. channels, pumps, mixers, and valves). Sensing capabilities, usually optical or electrochemical sensors, can also be integrated into the chip. This invaluable book describes the latest methods and novel technologies being developed for the fabrication of LOC devices and the new approaches for fluid control and manipulation. Expert authors from around the world describe and discuss the newest technologies for the prototyping of devices, including replication and direct machining methods of fabrication. Part I of the book covers all aspects of fabrication including laser micromachining, silicon and glass micromachining, PMMA and COC microfluidic substrates, and xurography (LOC prototyping with a cutting plotter). Part II focuses on fluid control and manipulation for LOC systems. As well as providing examples of the use of pumps in microfluidics, the topics covered include electrokinetic pumping (electroosmois), electrochemical pumping and electrowetting, and the fabrication of a microchip for rapid polymerase chain reaction (PCR). This comprehensive volume presents the current technologies in the field and includes theoretical and technical information to enable both the understanding of the technology and the reproduction of experiments. The book will help the reader to understand current LOC technologies, to perform similar experiments, to design new LOC systems, and to develop new methodologies and applications. It is an essential book for biologists and clinicians using LOC technology and developing applications and also for engineering, chemical, and physical science researchers developing analytical technologies. It will also be useful as a teaching tool for bioengineering, biomedical engineering, and biology.

Bio Mems

Author : Wanjun Wang
ISBN : 9781420018677
Genre : Technology & Engineering
File Size : 78. 12 MB
Format : PDF, ePub
Download : 560
Read : 1256

Download Now


Microelectromechanical systems (MEMS) are evolving into highly integrated technologies for a variety of application areas. Add the biological dimension to the mix and a host of new problems and issues arise that require a broad understanding of aspects from basic, materials, and medical sciences in addition to engineering. Collecting the efforts of renowned leaders in each of these fields, BioMEMS: Technologies and Applications presents the first wide-reaching survey of the design and application of MEMS technologies for use in biological and medical areas. This book considers both the unique characteristics of biological samples and the challenges of microscale engineering. Divided into three main sections, it first examines fabrication technologies using non-silicon processes, which use materials that are appropriate for medical/biological analyses. These include UV lithography, LIGA, nanoimprinting, injection molding, and hot-embossing. Attention then shifts to microfluidic components and sensing technologies for sample preparation, delivery, and analysis. The final section outlines various applications and systems at the leading edge of BioMEMS technology in a variety of areas such as genomics, drug delivery, and proteomics. Laying a cross-disciplinary foundation for further development, BioMEMS: Technologies and Applications provides engineers with an understanding of the biological challenges and biological scientists with an understanding of the engineering challenges of this burgeoning technology.

Mobile Microrobotics

Author : Metin Sitti
ISBN : 9780262341011
Genre : Technology & Engineering
File Size : 40. 68 MB
Format : PDF, Docs
Download : 516
Read : 1052

Download Now


Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches.The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

Handbook Of Optofluidics

Author : Aaron R. Hawkins
ISBN : 9781420093551
Genre : Technology & Engineering
File Size : 31. 78 MB
Format : PDF, Kindle
Download : 515
Read : 979

Download Now


Optofluidics is an emerging field that involves the use of fluids to modify optical properties and the use of optical devices to detect flowing media. Ultimately, its value is highly dependent on the successful integration of photonic integrated circuits with microfluidic or nanofluidic systems. Handbook of Optofluidics provides a snapshot of the state of the field, captures current trends, and gives insight into the technology of tomorrow, which will enable researchers to tackle challenges and opportunities that it can uniquely answer. Divided into three sections, this comprehensive resource begins by introducing the scientific foundations that contribute to optofluidics. It details the connections to related research areas and reveals the scientific influences currently shaping the design and function of optofluidic systems. It provides brief reviews of those established fields from which optofluidics has evolved, putting special emphasis on how they currently intersect. This introductory material provides a basis for understanding the chapters that follow. The second section explores the synthesis of fundamental concepts to create novel devices, specifically those with optical properties that are manipulated by fluids. A main theme that runs through this part is the dynamic reconfigurability made possible by flowing and reshaping fluids. The final section looks to future applications of the field, presenting recent developments in particle detection and manipulation primarily being developed for biosensing and biomedical applications. Enhanced by thematic connections throughout the chapters that help define the field, this volume is a concise reference for the growing optofluidics community and is poised to provide a stepping stone for continued research in an area that holds promise for a myriad of applications.

The Handbook Of Graphene Electrochemistry

Author : Dale A. C. Brownson
ISBN : 9781447164289
Genre : Science
File Size : 85. 80 MB
Format : PDF, Docs
Download : 405
Read : 212

Download Now


Graphene has grasped the attention of academia and industry world-wide due its unique structure and reported advantageous properties. This was reflected via the 2010 Nobel Prize in Physics being awarded for groundbreaking experiments regarding the two-dimensional material graphene. One particular area in which graphene has been extensively explored is electrochemistry where it is potentially the world’s thinnest electrode material. Graphene has been widely reported to perform beneficially over existing electrode materials when used within energy production or storage devices and when utilised to fabricate electrochemical sensors. This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.

Top Download:

Best Books