mechanics of asphalt microstructure and micromechanics microstructure and micromechanics

Download Book Mechanics Of Asphalt Microstructure And Micromechanics Microstructure And Micromechanics in PDF format. You can Read Online Mechanics Of Asphalt Microstructure And Micromechanics Microstructure And Micromechanics here in PDF, EPUB, Mobi or Docx formats.

Mechanics Of Asphalt Microstructure And Micromechanics

Author : Linbing Wang
ISBN : 9780071640978
Genre : Technology & Engineering
File Size : 67. 54 MB
Format : PDF, Mobi
Download : 254
Read : 206

Download Now

A State-of-the-Art Guide to the Mechanics of Asphalt Concrete Mechanics of Asphalt systematically covers both the fundamentals and most recent developments in applying rational mechanics, microstructure characterization methods, and numerical tools to understand the behavior of asphalt concrete (AC). The book describes the essential mathematics, mechanics, and numerical techniques required for comprehending advanced modeling and simulation of asphalt materials and asphalt pavements. Filled with detailed illustrations, this authoritative volume provides rational mechanisms to guide the development of best practices in mix design, construction methods, and performance evaluation of asphalt concrete. Mechanics of Asphalt covers: Fundamentals for mathematics and continuum mechanics Mechanical properties of constituents, including binder, aggregates, mastics, and mixtures Microstructure characterization Experimental methods to characterize the heterogeneous strain field Mixture theory and micromechanics applications Fundamentals of phenomenological models Multiscale modeling and moisture damage Models for asphalt concrete, including viscoplasticity, viscoplasticity with damage, disturbed state mechanics model, and fatigue failure criteria Finite element method, boundary element method, and discrete element method Digital specimen and digital test-integration of microstructure and simulation Simulation of asphalt compaction Characterization and modeling of anisotropic properties of asphalt concrete

Introduction To The Micromechanics Of Composite Materials

Author : Huiming Yin
ISBN : 9781498707305
Genre : Science
File Size : 78. 58 MB
Format : PDF, ePub, Docs
Download : 769
Read : 652

Download Now

Presents Concepts That Can Be Used in Design, Processing, Testing, and Control of Composite Materials Introduction to the Micromechanics of Composite Materials weaves together the basic concepts, mathematical fundamentals, and formulations of micromechanics into a systemic approach for understanding and modeling the effective material behavior of composite materials. As various emerging composite materials have been increasingly used in civil, mechanical, biomedical, and materials engineering, this textbook provides students with a fundamental understanding of the mechanical behavior of composite materials and prepares them for further research and development work with new composite materials. Students will understand from reading this book: The basic concepts of micromechanics such as RVE, eigenstrain, inclusions, and in homogeneities How to master the constitutive law of general composite material How to use the tensorial indicial notation to formulate the Eshelby problem Common homogenization methods The content is organized in accordance with a rigorous course. It covers micromechanics theory, the microstructure of materials, homogenization, and constitutive models of different types of composite materials, and it enables students to interpret and predict the effective mechanical properties of existing and emerging composites through microstructure-based modeling and design. As a prerequisite, students should already understand the concepts of boundary value problems in solid mechanics. Introduction to the Micromechanics of Composite Materials is suitable for senior undergraduate and graduate students.

Introduction To Unmanned Aircraft Systems Second Edition

Author : Douglas M. Marshall
ISBN : 9781138026933
Genre : Political Science
File Size : 89. 3 MB
Format : PDF, ePub, Mobi
Download : 739
Read : 961

Download Now

The proliferation of technological capability, miniaturization, and demand for aerial intelligence is pushing unmanned aerial systems (UAS) into the realm of a multi-billion dollar industry. This book surveys the UAS landscape from history to future applications. It discusses commercial applications, integration into the national airspace system (NAS), System function, operational procedures, safety concerns, and a host of other relevant topics. The book is dynamic and well-illustrated with separate sections for terminology and web- based resources for further information.

Micromechanics In Practice

Author : Michal Šejnoha
ISBN : 9781845646820
Genre : Technology & Engineering
File Size : 81. 98 MB
Format : PDF, ePub, Docs
Download : 374
Read : 863

Download Now

The book will concentrate on the application of micromechanics to the analysis of practical engineering problems. Both classical composites represented by carbon/carbon textile laminates and applications in Civil Engineering including asphalts and masonry structures will be considered. A common denominator of these considerably distinct material systems will be randomness of their internal structure. Also, owing to their complexity, all material systems will be studied on multiple scales. Since real engineering, rather than academic, problems are of the main interest, these scales will be treated independently from each other on the grounds of fully uncoupled multi-scale analysis. Attention will be limited to elastic and viscoelastic behaviour and to the linear heat transfer analysis. To achieve this, the book will address two different approaches to the homogenization of systems with random microstructures. In particular, classical averaging schemes based on the Eshelby solution of a solitary inclusion in an infinite medium represented by the Hashin-Shtrikman variational principles or by considerably simpler and more popular Mori-Tanaka method will be compared to detailed finite element simulations of a certain representative volume element (RVE) representing accommodated geometrical details of respective microstructures. These are derived by matching material statistics such as the one- and two-point probability functions of real and artificial microstructures. The latter one is termed the statistically equivalent periodic unit cell owing to the assumed periodic arrangement of reinforcements (carbon fibres, carbon fibre tows, stones or masonry bricks) in a certain matrix (carbon matrix, asphalt mastic, mortar). Other types of materials will be introduced in the form of exercises with emphases to the application of the Mori-Tanaka method in the framework of the previously mentioned uncoupled multi-scale analysis

Advances In Transportation Geotechnics

Author : Ed Ellis
ISBN : 0203885945
Genre : Technology & Engineering
File Size : 81. 98 MB
Format : PDF, Docs
Download : 275
Read : 1055

Download Now

Highways provide the arteries of modern society. The interaction of road, rail and other transport infrastructure with the ground is unusually intimate, and thus needs to be well-understood to provide economic and reliable infrastructure for society. Challenges include not only the design of new infrastructure (often on problematic ground), but increasingly the management and maintenance of aging assets in the face of issues such as climate change. This book is the written record of the first International Conference on Transportation Geotechnics held under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering, held in Nottingham, UK, in 2008. It comprises about 100 papers from a global selection of researchers and practitioners on: – Slope instability, stabilisation, and asset management; – Construction on soft ground; – Interaction with structures and geogrid reinforced soil; – Effect of climate change and vegetation; – Highways, pavements and subgrade; – Railway geotechnics; – Soil improvement; – Characterisation and recycling of geomaterials. A further part of this collection contains papers on unbound aggregate materials as used in pavement construction and drainage. They formed the ‘Unbound Aggregates in Roads (UNBAR7)’ theme of the conference which followed on from the previous symposia of that title, also held in Nottingham, UK, most recently in 2004. The volume will be of interest to professionals and academics in geotechnical, highway, railway and general civil engineering.

Modeling Of Asphalt Concrete

Author : Y. Kim
ISBN : 0071596518
Genre : Transportation
File Size : 72. 87 MB
Format : PDF, Docs
Download : 165
Read : 300

Download Now

An Expert Guide to Developing More-Durable and Cost-Effective Asphalt Pavements Written by distinguished experts from countries around the world, Modeling of Asphalt Concrete presents in-depth coverage of the current materials, methods, and models used for asphalt pavements. Included is state-of-the-art information on fundamental material properties and mechanisms affecting the performance of asphalt concrete, new rheological testing and analysis techniques, constitutive models, and performance prediction methodologies for asphalt concrete and asphalt pavements. Emphasis is placed on the modeling of asphalt mixes for specific geographic/climatic requirements. In light of America's crumbling infrastructure and our heavy usage of asphalt as a paving material, this timely reference is essential for the development of more-durable and cost-effective asphalt materials for both new construction and rehabilitation. Harness the Latest Breakthroughs in Asphalt Concrete Technology: • Asphalt Rheology • Constitutive Models • Stiffness Characterization • Models for Low-Temperature Cracking • Models for Fatigue Cracking and Moisture Damage • Models for Rutting and Aging

Bearing Capacity Of Roads Railways And Airfields Two Volume Set

Author : Erol Tutumluer
ISBN : 9780203865286
Genre : Technology & Engineering
File Size : 24. 10 MB
Format : PDF, ePub
Download : 108
Read : 784

Download Now

Bearing Capacity of Roads, Railways and Airfields focuses on issues pertaining to the bearing capacity of highway and airfield pavements and railroad track structures and provided a forum to promote efficient design, construction and maintenance of the transportation infrastructure. The collection of papers from the Eighth International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCR2A09) includes contributions on a variety of topics and will be of particular interest to academics, researchers, and practitioners involved in geotechnical, pavement, and railroad engineering disciplines. It is primarily concerned with the many issues pertaining to the bearing capacity and mechanistic based design of highway and airfield pavements and railroad track structures.

Structural Characterization Of Micromechanical Properties In Asphalt Using Atomic Force Microscopy

Author : Robert Grover Allen
ISBN : OCLC:781468495
Genre :
File Size : 22. 72 MB
Format : PDF
Download : 643
Read : 160

Download Now

The purpose of this study was to characterize the micromechanical properties of various structural components in asphalt using Atomic Force Microscopy (AFM). The focus of the study was based on nano-indentation experiments performed within a micro-grid of asphalt phases in order to determine micromechanical properties such as stiffness, adhesion and elastic/plastic behavior. The change in microstructure and micromechanical behavior due to oxidative aging of the asphalt was also a primary focus of the study. The experiment was performed with careful consideration of AFM artifacts, which can occur due to factors such as geometry of the cantilever tip, hysteresis, filtering methods and acoustic vibrations. The materials used in this study included asphalts AAB, AAD and ABD from the Materials Reference Library (MRL) of the Strategic Highway Research Program (SHRP), chosen due to variations in crude source, chemical composition and elemental analysis for each asphalt type. The analysis of nano-indentation creep measurements corresponding to phase-separated regions ultimately revealed heterogeneous domains in asphalt with different mechanical properties, and oxidative aging was found to induce substantial microstructural change within these domains, including variations in phase structure, phase properties and phase distribution. The form and extent of these changes, however, were different for each asphalt studied. Data analysis and information collected during this study were used for comparisons to existing models and asphalt data, which validated results and established correlations to earlier, related studies. From these comparisons, it was found that data parallels followed expected trends; furthermore, analogous interpretations and distinctions were made between results from this study and the micellar and microstructural models of asphalt. This study of micromechanical properties that govern asphalt behavior has yielded information essential to the advancement of hot mix asphalt (HMA) performance, including a new asphalt "weak zone" hypothesis and a foundation of data for implementation into new and existing asphalt models.

Modelling And Computation In Engineering

Author : Jinrong Zhu
ISBN : 9780203829851
Genre : Technology & Engineering
File Size : 66. 48 MB
Format : PDF, ePub, Docs
Download : 999
Read : 369

Download Now

In recent years the theory and technology of modelling and computation in engineering has expanded rapidly, and has been widely applied in various kinds of engineering projects. Modelling and Computation in Engineering is a collection of 37 contributions, which cover the state-of-the-art on a broad range of topics, including: - Tunnelling - Seismic reduction technologies - Wind-induced vibration control - Asphalt-rubber concrete - Open boundary field problems - Road structures - Bridge structures - Earthquake engineering - Steel structures Modelling and Computation in Engineering will be much of interest to academics, leading engineers, industry researchers and scholar students in engineering and engineering-related disciplines.

A Coupled Micromechanical Model Of Moisture Induced Damage In Asphalt Mixtures

Author : Silvia Caro Spinel
ISBN : OCLC:705389367
Genre :
File Size : 82. 87 MB
Format : PDF
Download : 719
Read : 712

Download Now

The deleterious effect of moisture on the structural integrity of asphalt mixtures has been recognized as one of the main causes of early deterioration of asphalt pavements. This phenomenon, usually referred to as moisture damage, is defined as the progressive loss of structural integrity of the mixture that is primarily caused by the presence of moisture in liquid or vapor state. Moisture damage is associated with the development of different physical, mechanical, and chemical processes occurring within the microstructure of the mixture at different intensities and rates. Although there have been important advancements in identifying and characterizing this phenomenon, there is still a lack of understanding of the damage mechanisms occurring at the microscopic level. This situation has motivated the research work reported in this dissertation. The main objective of this dissertation is to formulate and apply a numerical micromechanical model of moisture-induced damage in asphalt mixtures. The model focuses on coupling the effects of moisture diffusion-one of the three main modes of moisture transport within asphalt mixtures-with the mechanical performance of the microstructure. Specifically, the model aims to account for the effect of moisture diffusion on the degradation of the viscoelastic bulk matrix of the mixture (i.e., cohesive degradation) and on the gradual deterioration of the adhesive bonds between the aggregates and the asphalt matrix (i.e., adhesive degradation). The micromechanical model was applied to study the role of some physical and mechanical properties of the constitutive phases of the mixtures on the susceptibility of the mixture to moisture damage. The results from this analysis suggest that the diffusion coefficients of the asphalt matrix and aggregates, as well as the bond strength of the aggregate-matrix interface, have the most influence on the moisture susceptibility of the mixtures. The micromechanical model was further used to investigate the influence of the void phase of asphalt mixtures on the generation of moisture-related deterioration processes. Two different probabilistic-based approaches were used to accomplish this objective. In the first approach, a volumetric distribution of air void sizes measured using X-Ray Computed Tomography in a dense-graded asphalt mixture was used to generate probable void structures in a microstructure of an asphalt mixture. In the second approach, a stochastic modeling technique based on random field theory was used to generate probable air void distributions of the mixture. In this second approach, the influence of the air void was accounted for by taking the physical and mechanical properties of the asphalt matrix dependent on probable void distributions. Although both approaches take into consideration the characteristics of the air void phase on the mechanical response of the mixtures subjected to moist environments, the former explicitly introduces the air phase within the microstructure while the latter indirectly includes its effects by modifying the material properties of the bulk matrix. The results from these simulations demonstrated that the amount, variability and location of air voids are decisive in determining the moisture-dependent performance of asphalt mixtures. The results from this dissertation provide new information on the kinetics of moisture damage mechanisms in asphalt mixtures. In particular, the results obtained from applying the micromechanical model permitted identification of the relative influence of the characteristics of the constitutive phases of a mixture on its moisture-related mechanical performance. This information can be used as part of design methodologies of asphalt mixtures, and/or as an input in life-cycle analysis models and maintenance programs of road infrastructure.

Top Download:

Best Books