matrix analysis for statistics wiley series in probability and statistics

Download Book Matrix Analysis For Statistics Wiley Series In Probability And Statistics in PDF format. You can Read Online Matrix Analysis For Statistics Wiley Series In Probability And Statistics here in PDF, EPUB, Mobi or Docx formats.

Matrix Analysis For Statistics

Author : James R. Schott
ISBN : 9781119092469
Genre : Mathematics
File Size : 52. 50 MB
Format : PDF, Docs
Download : 547
Read : 1034

Download Now

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Matrix Algebra Useful For Statistics

Author : Shayle R. Searle
ISBN : 9781118935149
Genre : Mathematics
File Size : 67. 87 MB
Format : PDF
Download : 618
Read : 189

Download Now

This book addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations.

Combinatorial Matrix Theory And Generalized Inverses Of Matrices

Author : Ravindra B. Bapat
ISBN : 9788132210535
Genre : Mathematics
File Size : 75. 62 MB
Format : PDF, Mobi
Download : 674
Read : 286

Download Now

This book consists of eighteen articles in the area of `Combinatorial Matrix Theory' and `Generalized Inverses of Matrices'. Original research and expository articles presented in this publication are written by leading Mathematicians and Statisticians working in these areas. The articles contained herein are on the following general topics: `matrices in graph theory', `generalized inverses of matrices', `matrix methods in statistics' and `magic squares'. In the area of matrices and graphs, speci_c topics addressed in this volume include energy of graphs, q-analog, immanants of matrices and graph realization of product of adjacency matrices. Topics in the book from `Matrix Methods in Statistics' are, for example, the analysis of BLUE via eigenvalues of covariance matrix, copulas, error orthogonal model, and orthogonal projectors in the linear regression models. Moore-Penrose inverse of perturbed operators, reverse order law in the case of inde_nite inner product space, approximation numbers, condition numbers, idempotent matrices, semiring of nonnegative matrices, regular matrices over incline and partial order of matrices are the topics addressed under the area of theory of generalized inverses. In addition to the above traditional topics and a report on CMTGIM 2012 as an appendix, we have an article on old magic squares from India.

Introduction To Bayesian Econometrics

Author : Edward Greenberg
ISBN : 9781139465946
Genre : Business & Economics
File Size : 22. 95 MB
Format : PDF, ePub
Download : 140
Read : 279

Download Now

This book introduces the increasingly popular Bayesian approach to statistics to graduates and advanced undergraduates. In contrast to the long-standing frequentist approach to statistics, the Bayesian approach makes explicit use of prior information and is based on the subjective view of probability. Bayesian econometrics takes probability theory as applying to all situations in which uncertainty exists, including uncertainty over the values of parameters. A distinguishing feature of this book is its emphasis on classical and Markov chain Monte Carlo (MCMC) methods of simulation. The book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics, and other applied fields. These include the linear regression model and extensions to Tobit, probit, and logit models; time series models; and models involving endogenous variables.

A Matrix Handbook For Statisticians

Author : George A. F. Seber
ISBN : 0470226781
Genre : Mathematics
File Size : 57. 1 MB
Format : PDF, ePub, Docs
Download : 726
Read : 906

Download Now

A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.

Linear Models In Statistics

Author : Alvin C. Rencher
ISBN : 9780470192603
Genre : Mathematics
File Size : 57. 44 MB
Format : PDF, Docs
Download : 819
Read : 227

Download Now

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Matrix Differential Calculus With Applications In Statistics And Econometrics

Author : Jan R. Magnus
ISBN : 047198633X
Genre : Mathematics
File Size : 76. 73 MB
Format : PDF, ePub, Docs
Download : 993
Read : 1138

Download Now

This text is a self-contained and unified treatment of matrix differential calculus, specifically written for econometricians and statisticians. It can serve as a textbook for advanced undergraduates and postgraduates in econometrics and as a reference book for practising econometricians.

Methods For Statistical Data Analysis Of Multivariate Observations

Author : R. Gnanadesikan
ISBN : 9781118030929
Genre : Mathematics
File Size : 69. 11 MB
Format : PDF, Kindle
Download : 729
Read : 471

Download Now

A practical guide for multivariate statistical techniques-- now updated and revised In recent years, innovations in computer technology and statistical methodologies have dramatically altered the landscape of multivariate data analysis. This new edition of Methods for Statistical Data Analysis of Multivariate Observations explores current multivariate concepts and techniques while retaining the same practical focus of its predecessor. It integrates methods and data-based interpretations relevant to multivariate analysis in a way that addresses real-world problems arising in many areas of interest. Greatly revised and updated, this Second Edition provides helpful examples, graphical orientation, numerous illustrations, and an appendix detailing statistical software, including the S (or Splus) and SAS systems. It also offers * An expanded chapter on cluster analysis that covers advances in pattern recognition * New sections on inputs to clustering algorithms and aids for interpreting the results of cluster analysis * An exploration of some new techniques of summarization and exposure * New graphical methods for assessing the separations among the eigenvalues of a correlation matrix and for comparing sets of eigenvectors * Knowledge gained from advances in robust estimation and distributional models that are slightly broader than the multivariate normal This Second Edition is invaluable for graduate students, applied statisticians, engineers, and scientists wishing to use multivariate techniques in a variety of disciplines.

Statistical Factor Analysis And Related Methods

Author : Alexander T. Basilevsky
ISBN : 9780470317730
Genre : Mathematics
File Size : 52. 21 MB
Format : PDF, ePub
Download : 862
Read : 1142

Download Now

Statistical Factor Analysis and Related Methods Theory and Applications In bridging the gap between the mathematical and statistical theory of factor analysis, this new work represents the first unified treatment of the theory and practice of factor analysis and latent variable models. It focuses on such areas as: * The classical principal components model and sample-population inference * Several extensions and modifications of principal components, including Q and three-mode analysis and principal components in the complex domain * Maximum likelihood and weighted factor models, factor identification, factor rotation, and the estimation of factor scores * The use of factor models in conjunction with various types of data including time series, spatial data, rank orders, and nominal variable * Applications of factor models to the estimation of functional forms and to least squares of regression estimators

Applied Linear Regression

Author : Sanford Weisberg
ISBN : 9781118594858
Genre : Mathematics
File Size : 62. 15 MB
Format : PDF, Kindle
Download : 943
Read : 675

Download Now

Praise for the Third Edition "...this is an excellent book which could easily be used as a course text..." —International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illustrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. While maintaining the accessible appeal of each previous edition,Applied Linear Regression, Fourth Edition features: Graphical methods stressed in the initial exploratory phase, analysis phase, and summarization phase of an analysis In-depth coverage of parameter estimates in both simple and complex models, transformations, and regression diagnostics Newly added material on topics including testing, ANOVA, and variance assumptions Updated methodology, such as bootstrapping, cross-validation binomial and Poisson regression, and modern model selection methods Applied Linear Regression, Fourth Edition is an excellent textbook for upper-undergraduate and graduate-level students, as well as an appropriate reference guide for practitioners and applied statisticians in engineering, business administration, economics, and the social sciences.

Top Download:

Best Books