markov chains analytic and monte carlo computations wiley series in probability and statistics

Download Book Markov Chains Analytic And Monte Carlo Computations Wiley Series In Probability And Statistics in PDF format. You can Read Online Markov Chains Analytic And Monte Carlo Computations Wiley Series In Probability And Statistics here in PDF, EPUB, Mobi or Docx formats.

Markov Chains

Author : Carl Graham
ISBN : 9781118517079
Genre : Mathematics
File Size : 79. 29 MB
Format : PDF, Kindle
Download : 912
Read : 1189

Download Now


Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies. A detailed and rigorous presentation of Markov chains with discrete time and state space. An appendix presenting probabilistic notions that are necessary to the reader, as well as giving more advanced measure-theoretic notions.

Markov Chains

Author : Carl Graham
ISBN : 9781118882696
Genre : Mathematics
File Size : 66. 86 MB
Format : PDF
Download : 200
Read : 419

Download Now


Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies. A detailed and rigorous presentation of Markov chains with discrete time and state space. An appendix presenting probabilistic notions that are necessary to the reader, as well as giving more advanced measure-theoretic notions.

A First Course In Probability And Markov Chains

Author : Giuseppe Modica
ISBN : 9781118477748
Genre : Mathematics
File Size : 76. 49 MB
Format : PDF, Docs
Download : 699
Read : 981

Download Now


Provides an introduction to basic structures of probability with a view towards applications in information technology A First Course in Probability and Markov Chains presents an introduction to the basic elements in probability and focuses on two main areas. The first part explores notions and structures in probability, including combinatorics, probability measures, probability distributions, conditional probability, inclusion-exclusion formulas, random variables, dispersion indexes, independent random variables as well as weak and strong laws of large numbers and central limit theorem. In the second part of the book, focus is given to Discrete Time Discrete Markov Chains which is addressed together with an introduction to Poisson processes and Continuous Time Discrete Markov Chains. This book also looks at making use of measure theory notations that unify all the presentation, in particular avoiding the separate treatment of continuous and discrete distributions. A First Course in Probability and Markov Chains: Presents the basic elements of probability. Explores elementary probability with combinatorics, uniform probability, the inclusion-exclusion principle, independence and convergence of random variables. Features applications of Law of Large Numbers. Introduces Bernoulli and Poisson processes as well as discrete and continuous time Markov Chains with discrete states. Includes illustrations and examples throughout, along with solutions to problems featured in this book. The authors present a unified and comprehensive overview of probability and Markov Chains aimed at educating engineers working with probability and statistics as well as advanced undergraduate students in sciences and engineering with a basic background in mathematical analysis and linear algebra.

Monte Carlo Statistical Methods

Author : Christian Robert
ISBN : 9781475741452
Genre : Mathematics
File Size : 76. 46 MB
Format : PDF, ePub, Docs
Download : 232
Read : 710

Download Now


We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Explorations In Monte Carlo Methods

Author : Ronald W. Shonkwiler
ISBN : 9780387878379
Genre : Mathematics
File Size : 78. 3 MB
Format : PDF, ePub, Docs
Download : 108
Read : 1093

Download Now


Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

Advanced Markov Chain Monte Carlo Methods

Author : Faming Liang
ISBN : 9780470669730
Genre : Mathematics
File Size : 63. 27 MB
Format : PDF
Download : 395
Read : 1287

Download Now


Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

Markov Chains And Mixing Times

Author : David Asher Levin
ISBN : 0821886274
Genre : Mathematics
File Size : 36. 81 MB
Format : PDF, Mobi
Download : 914
Read : 757

Download Now


This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods. Whenever possible, probabilistic methods are emphasized. The book includes many examples and provides brief introductions to some central models of statistical mechanics. Also provided are accounts of random walks on networks, including hitting and cover times, and analyses of several methods of shuffling cards. As a prerequisite, the authors assume a modest understanding of probability theory and linear algebra at an undergraduate level. Markov Chains and Mixing Times is meant to bring the excitement of this active area of research to a wide audience.

Time Series Analysis

Author : Wilfredo Palma
ISBN : 9781118634233
Genre : Mathematics
File Size : 83. 37 MB
Format : PDF, Docs
Download : 348
Read : 951

Download Now


A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univariate time series by illustrating a number of well-known models such as ARMA and ARIMA. Providing contemporary coverage, the book features several useful and newlydeveloped techniques such as weak and strong dependence, Bayesian methods, non-Gaussian data, local stationarity, missing values and outliers, and threshold models. Time Series Analysis includes practical applications of time series methods throughout, as well as: Real-world examples and exercise sets that allow readers to practice the presented methods and techniques Numerous detailed analyses of computational aspects related to the implementation of methodologies including algorithm efficiency, arithmetic complexity, and process time End-of-chapter proposed problems and bibliographical notes to deepen readers’ knowledge of the presented material Appendices that contain details on fundamental concepts and select solutions of the problems implemented throughout A companion website with additional data fi les and computer codes Time Series Analysis is an excellent textbook for undergraduate and beginning graduate-level courses in time series as well as a supplement for students in advanced statistics, mathematics, economics, finance, engineering, and physics. The book is also a useful reference for researchers and practitioners in time series analysis, econometrics, and finance. Wilfredo Palma, PhD, is Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. He has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics. He is the author of Long-Memory Time Series: Theory and Methods, also published by Wiley.

Applied Bayesian Modelling

Author : Peter Congdon
ISBN : 9781118895054
Genre : Mathematics
File Size : 61. 10 MB
Format : PDF, ePub, Mobi
Download : 523
Read : 667

Download Now


This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Introduction To Time Series Analysis And Forecasting

Author : Douglas C. Montgomery
ISBN : 9781118745151
Genre : Mathematics
File Size : 75. 73 MB
Format : PDF, ePub
Download : 562
Read : 451

Download Now


Praise for the First Edition "…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.

Top Download:

Best Books