machine learning hands on for developers and technical professionals

Download Book Machine Learning Hands On For Developers And Technical Professionals in PDF format. You can Read Online Machine Learning Hands On For Developers And Technical Professionals here in PDF, EPUB, Mobi or Docx formats.

Machine Learning

Author : Jason Bell
ISBN : 9781118889497
Genre : Mathematics
File Size : 54. 26 MB
Format : PDF, ePub, Docs
Download : 138
Read : 626

Download Now


Dig deep into the data with a hands-on guide to machine learning Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.

Practical Machine Learning With Python

Author : Dipanjan Sarkar
ISBN : 9781484232071
Genre : Computers
File Size : 79. 92 MB
Format : PDF
Download : 403
Read : 280

Download Now


Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

Building Machine Learning Systems With Python Second Edition

Author : Luis Pedro Coelho
ISBN : 9781784392888
Genre : Computers
File Size : 73. 55 MB
Format : PDF
Download : 803
Read : 829

Download Now


This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

Data Mining

Author : Ian H. Witten
ISBN : 9780128043578
Genre : Computers
File Size : 47. 9 MB
Format : PDF, Kindle
Download : 857
Read : 496

Download Now


Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Machine Learning

Author : Sergios Theodoridis
ISBN : 9780128017227
Genre : Computers
File Size : 78. 77 MB
Format : PDF, Docs
Download : 863
Read : 405

Download Now


This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Machine Learning In Action

Author : Peter Harrington
ISBN : 1617290181
Genre : Computers
File Size : 57. 19 MB
Format : PDF, ePub, Docs
Download : 602
Read : 949

Download Now


Provides information on the concepts of machine theory, covering such topics as statistical data processing, data visualization, and forecasting.

Machine Learning For The Web

Author : Andrea Isoni
ISBN : 9781785888724
Genre : Computers
File Size : 79. 98 MB
Format : PDF, Mobi
Download : 652
Read : 809

Download Now


Explore the web and make smarter predictions using Python About This Book Targets two big and prominent markets where sophisticated web apps are of need and importance. Practical examples of building machine learning web application, which are easy to follow and replicate. A comprehensive tutorial on Python libraries and frameworks to get you up and started. Who This Book Is For The book is aimed at upcoming and new data scientists who have little experience with machine learning or users who are interested in and are working on developing smart (predictive) web applications. Knowledge of Django would be beneficial. The reader is expected to have a background in Python programming and good knowledge of statistics. What You Will Learn Get familiar with the fundamental concepts and some of the jargons used in the machine learning community Use tools and techniques to mine data from websites Grasp the core concepts of Django framework Get to know the most useful clustering and classification techniques and implement them in Python Acquire all the necessary knowledge to build a web application with Django Successfully build and deploy a movie recommendation system application using the Django framework in Python In Detail Python is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python's impressive Django framework and will find out how to build a modern simple web app with machine learning features. Style and approach Instead of being overwhelmed with multiple concepts at once, this book provides a step-by-step approach that will guide you through one topic at a time. An intuitive step-by step guide that will focus on one key topic at a time. Building upon the acquired knowledge in each chapter, we will connect the fundamental theory and practical tips by illustrative visualizations and hands-on code examples.

Introduction To Data Science

Author : Laura Igual
ISBN : 9783319500171
Genre : Computers
File Size : 56. 70 MB
Format : PDF, Docs
Download : 705
Read : 378

Download Now


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

Learning Akka

Author : Jason Goodwin
ISBN : 9781784393540
Genre : Computers
File Size : 86. 65 MB
Format : PDF, Mobi
Download : 309
Read : 711

Download Now


Build fault tolerant concurrent and distributed applications with Akka About This Book Build networked applications that self-heal Scale out your applications to handle more traffic faster An easy-to-follow guide with a number of examples to ensure you get the best start with Akka Who This Book Is For This book is intended for beginner to intermediate Java or Scala developers who want to build applications to serve the high-scale user demands in computing today. If you need your applications to handle the ever-growing user bases and datasets with high performance demands, then this book is for you. Learning Akka will let you do more for your users with less code and less complexity, by building and scaling your networked applications with ease. What You Will Learn Use Akka to overcome the challenges of concurrent programming Resolve the issues faced in distributed computing with the help of Akka Scale applications to serve a high number of concurrent users Make your system fault-tolerant with self-healing applications Provide a timely response to users with easy concurrency Reduce hardware costs by building more efficient multi-user applications Maximise network efficiency by scaling it In Detail Software today has to work with more data, more users, more cores, and more servers than ever. Akka is a distributed computing toolkit that enables developers to build correct concurrent and distributed applications using Java and Scala with ease, applications that scale across servers and respond to failure by self-healing. As well as simplifying development, Akka enables multiple concurrency development patterns with particular support and architecture derived from Erlang's concept of actors (lightweight concurrent entities). Akka is written in Scala, which has become the programming language of choice for development on the Akka platform. Learning Akka aims to be a comprehensive walkthrough of Akka. This book will take you on a journey through all the concepts of Akka that you need in order to get started with concurrent and distributed applications and even build your own. Beginning with the concept of Actors, the book will take you through concurrency in Akka. Moving on to networked applications, this book will explain the common pitfalls in these difficult problem areas while teaching you how to use Akka to overcome these problems with ease. The book is an easy to follow example-based guide that will strengthen your basic knowledge of Akka and aid you in applying the same to real-world scenarios. Style and approach An easy-to-follow, example-based guide that will take you through building several networked-applications that work together while you are learning concurrent and distributed computing concepts. Each topic is explained while showing you how to design with Akka and how it is used to overcome common problems in applications. By showing Akka in context to the problems, it will help you understand what the common problems are in distributed applications and how to overcome them.

Java Deep Learning Essentials

Author : Yusuke Sugomori
ISBN : 9781785283147
Genre : Computers
File Size : 77. 39 MB
Format : PDF
Download : 736
Read : 935

Download Now


Dive into the future of data science and learn how to build the sophisticated algorithms that are fundamental to deep learning and AI with Java About This Book Go beyond the theory and put Deep Learning into practice with Java Find out how to build a range of Deep Learning algorithms using a range of leading frameworks including DL4J, Theano and Caffe Whether you're a data scientist or Java developer, dive in and find out how to tackle Deep Learning Who This Book Is For This book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big data environment. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Implement machine learning algorithms related to deep learning Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Gain an insight into the deep learning library DL4J and its practical uses Get to know device strategies to use deep learning algorithms and libraries in the real world Explore deep learning further with Theano and Caffe In Detail AI and Deep Learning are transforming the way we understand software, making computers more intelligent than we could even imagine just a decade ago. Deep Learning algorithms are being used across a broad range of industries – as the fundamental driver of AI, being able to tackle Deep Learning is going to a vital and valuable skill not only within the tech world but also for the wider global economy that depends upon knowledge and insight for growth and success. It's something that's moving beyond the realm of data science – if you're a Java developer, this book gives you a great opportunity to expand your skillset. Starting with an introduction to basic machine learning algorithms, to give you a solid foundation, Deep Learning with Java takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. Once you've got to grips with the fundamental mathematical principles, you'll start exploring neural networks and identify how to tackle challenges in large networks using advanced algorithms. You will learn how to use the DL4J library and apply Deep Learning to a range of real-world use cases. Featuring further guidance and insights to help you solve challenging problems in image processing, speech recognition, language modeling, this book will make you rethink what you can do with Java, showing you how to use it for truly cutting-edge predictive insights. As a bonus, you'll also be able to get to grips with Theano and Caffe, two of the most important tools in Deep Learning today. By the end of the book, you'll be ready to tackle Deep Learning with Java. Wherever you've come from – whether you're a data scientist or Java developer – you will become a part of the Deep Learning revolution! Style and approach This is a step-by-step, practical tutorial that discusses key concepts. This book offers a hands-on approach to key algorithms to help you develop a greater understanding of deep learning. It is packed with implementations from scratch, with detailed explanation that make the concepts easy to understand and follow.

Top Download:

Best Books