introduction to statistical pattern recognition

Download Book Introduction To Statistical Pattern Recognition in PDF format. You can Read Online Introduction To Statistical Pattern Recognition here in PDF, EPUB, Mobi or Docx formats.

Introduction To Statistical Pattern Recognition

Author : Keinosuke Fukunaga
ISBN : 0080478654
Genre : Computers
File Size : 79. 30 MB
Format : PDF, Kindle
Download : 735
Read : 851

Download Now


This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Statistical Pattern Recognition

Author : Andrew R. Webb
ISBN : 9780470854785
Genre : Mathematics
File Size : 64. 73 MB
Format : PDF, Docs
Download : 981
Read : 349

Download Now


Statistical pattern recognition is a very active area of study and research, which has seen many advances in recent years. New and emerging applications - such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition - require robust and efficient pattern recognition techniques. Statistical decision making and estimation are regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fully updated with new methods, applications and references. It provides a comprehensive introduction to this vibrant area - with material drawn from engineering, statistics, computer science and the social sciences - and covers many application areas, such as database design, artificial neural networks, and decision support systems. * Provides a self-contained introduction to statistical pattern recognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vector machines, and unsupervised classification. * Each section concludes with a description of the applications that have been addressed and with further developments of the theory. * Includes background material on dissimilarity, parameter estimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions to more lengthy projects. The book is aimed primarily at senior undergraduate and graduate students studying statistical pattern recognition, pattern processing, neural networks, and data mining, in both statistics and engineering departments. It is also an excellent source of reference for technical professionals working in advanced information development environments. For further information on the techniques and applications discussed in this book please visit www.statistical-pattern-recognition.net

Statistical Pattern Recognition

Author : Andrew Webb
ISBN : 0340741643
Genre : Computers
File Size : 20. 26 MB
Format : PDF, Mobi
Download : 470
Read : 966

Download Now


From engineering to statistics, from computer science to the social sciences, 'Statistical Pattern Recognition' shows how closely these fields are related in terms of application. Areas such as database design, artificial neural networks and decision support are common to all. The author also examines the more diverse theoretical topics available to the practitioner or researcher, such as outlier detection and model selection, and concludes each section with a description of the wider range of practical applications and the future developments of theoretical techniques.Providing an introduction to statistical pattern theory and techniques that draws on material from a wide range of fields, 'Statistical Pattern Recognition' is a must for all technical professionals wanting to get up to speed on the recent advances in this dymanic subject area.

An Elementary Introduction To Statistical Learning Theory

Author : Sanjeev Kulkarni
ISBN : 1118023463
Genre : Mathematics
File Size : 62. 62 MB
Format : PDF, ePub
Download : 545
Read : 555

Download Now


A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

Instruction To Statistical Pattern Recognition

Author : Keinosuke Fukunaga
ISBN : 9780323162784
Genre : Technology & Engineering
File Size : 44. 29 MB
Format : PDF, ePub, Mobi
Download : 384
Read : 1296

Download Now


Introduction to Statistical Pattern Recognition introduces the reader to statistical pattern recognition, with emphasis on statistical decision and estimation. Pattern recognition problems are discussed in terms of the eigenvalues and eigenvectors. Comprised of 11 chapters, this book opens with an overview of the formulation of pattern recognition problems. The next chapter is devoted to linear algebra, with particular reference to the properties of random variables and vectors. Hypothesis testing and parameter estimation are then discussed, along with error probability estimation and linear classifiers. The following chapters focus on successive approaches where the classifier is adaptively adjusted each time one sample is observed; feature selection and linear mapping for one distribution and multidistributions; and problems of nonlinear mapping. The final chapter describes a clustering algorithm and considers criteria for both parametric and nonparametric clustering. This monograph will serve as a text for the introductory courses of pattern recognition as well as a reference book for practitioners in the fields of mathematics and statistics.

Klassifikation Von Mustern

Author : H. Niemann
ISBN : 9783642475177
Genre : Computers
File Size : 25. 74 MB
Format : PDF, ePub, Mobi
Download : 693
Read : 662

Download Now



Digitale Bildverarbeitung

Author : Wilhelm Burger
ISBN : 9783540276531
Genre : Computers
File Size : 20. 82 MB
Format : PDF
Download : 531
Read : 1017

Download Now


Die Autoren geben eine fundierte Einführung in die wichtigsten Methoden der digitalen Bildverarbeitung. Dabei steht die praktische Anwendbarkeit im Vordergrund, formale und mathematische Aspekte sind auf das Wesentliche reduziert, ohne dabei auf eine präzise und konsistente Vorgehensweise zu verzichten. Der Text eignet sich für technisch orientierte Studiengänge ab dem 3.Semester und basiert auf der mehrjährigen Lehrerfahrung der Autoren zu diesem Thema. Der Einsatz in der Lehre wird durch zahlreiche praktische Übungsaufgaben unterstützt. Das Buch eignet sich auch als detaillierte Referenz für Praktiker und Anwender gängiger Verfahren der digitalen Bildverarbeitung, z.B. in der Medizin, der Materialprüfung, der Robotik oder der Medientechnik. Softwareseitig basiert das Buch auf der in Java implementierten und frei verfügbaren Bildverarbeitungsumgebung ImageJ.

Introduction To Statistical Machine Learning

Author : Masashi Sugiyama
ISBN : 9780128023501
Genre : Computers
File Size : 53. 97 MB
Format : PDF, Mobi
Download : 836
Read : 464

Download Now


Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus. Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning. Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.

Discriminant Analysis And Statistical Pattern Recognition

Author : Geoffrey McLachlan
ISBN : 0471691151
Genre : Mathematics
File Size : 37. 46 MB
Format : PDF, Kindle
Download : 342
Read : 748

Download Now


The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Survey Errors and Survey Costs is a well-written, well-presented, and highly readable text that should be on every error-conscious statistician?s bookshelf. Any courses that cover the theory and design of surveys should certainly have Survey Errors and Survey Costs on their reading lists." ?Phil Edwards MEL, Aston University Science Park, UK Review in The Statistician, Vol. 40, No. 3, 1991 "This volume is an extremely valuable contribution to survey methodology. It has many virtues: First, it provides a framework in which survey errors can be segregated by sources. Second, Groves has skillfully synthesized existing knowledge, bringing together in an easily accessible form empirical knowledge from a variety of sources. Third, he has managed to integrate into a common framework the contributions of several disciplines. For example, the work of psychometricians and cognitive psychologists is made relevant to the research of econometricians as well as the field experience of sociologists. Finally, but not least, Groves has managed to present all this in a style that is accessible to a wide variety of readers ranging from survey specialists to policymakers." ?Peter H. Rossi University of Massachusetts at Amherst Review in Journal of Official Statistics, January 1991

Introduction To Pattern Recognition

Author : Menahem Friedman
ISBN : 9789813105188
Genre : Computers
File Size : 62. 68 MB
Format : PDF, Docs
Download : 592
Read : 252

Download Now


This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.

Top Download:

Best Books