introduction to nonsmooth optimization theory practice and software

Download Book Introduction To Nonsmooth Optimization Theory Practice And Software in PDF format. You can Read Online Introduction To Nonsmooth Optimization Theory Practice And Software here in PDF, EPUB, Mobi or Docx formats.

Introduction To Nonsmooth Optimization

Author : Adil Bagirov
ISBN : 9783319081144
Genre : Business & Economics
File Size : 77. 23 MB
Format : PDF, ePub, Mobi
Download : 353
Read : 847

Download Now

This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.

Numerical Optimization

Author : Jorge Nocedal
ISBN : 9780387400655
Genre : Mathematics
File Size : 57. 74 MB
Format : PDF, Kindle
Download : 396
Read : 253

Download Now

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Handbook Of Optimization

Author : Ivan Zelinka
ISBN : 9783642305047
Genre : Computers
File Size : 83. 3 MB
Format : PDF, Kindle
Download : 658
Read : 636

Download Now

Optimization problems were and still are the focus of mathematics from antiquity to the present. Since the beginning of our civilization, the human race has had to confront numerous technological challenges, such as finding the optimal solution of various problems including control technologies, power sources construction, applications in economy, mechanical engineering and energy distribution amongst others. These examples encompass both ancient as well as modern technologies like the first electrical energy distribution network in USA etc. Some of the key principles formulated in the middle ages were done by Johannes Kepler (Problem of the wine barrels), Johan Bernoulli (brachystochrone problem), Leonhard Euler (Calculus of Variations), Lagrange (Principle multipliers), that were formulated primarily in the ancient world and are of a geometric nature. In the beginning of the modern era, works of L.V. Kantorovich and G.B. Dantzig (so-called linear programming) can be considered amongst others. This book discusses a wide spectrum of optimization methods from classical to modern, alike heuristics. Novel as well as classical techniques is also discussed in this book, including its mutual intersection. Together with many interesting chapters, a reader will also encounter various methods used for proposed optimization approaches, such as game theory and evolutionary algorithms or modelling of evolutionary algorithm dynamics like complex networks.

Optimization Methods In Finance

Author : Gerard Cornuejols
ISBN : 9781139460569
Genre : Mathematics
File Size : 78. 84 MB
Format : PDF, ePub
Download : 351
Read : 550

Download Now

Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Introductory Lectures On Convex Optimization

Author : Y. Nesterov
ISBN : 9781441988539
Genre : Mathematics
File Size : 39. 56 MB
Format : PDF, ePub, Mobi
Download : 274
Read : 512

Download Now

It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].

Numerical Optimization

Author : Joseph-Frédéric Bonnans
ISBN : 9783662050781
Genre : Mathematics
File Size : 23. 3 MB
Format : PDF, Docs
Download : 374
Read : 630

Download Now

This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.

Foundations Of Optimization

Author : Osman Güler
ISBN : 0387684077
Genre : Business & Economics
File Size : 85. 93 MB
Format : PDF, ePub, Mobi
Download : 506
Read : 1068

Download Now

This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.

Nonlinear Optimization

Author : Andrzej Ruszczynski
ISBN : 9781400841059
Genre : Mathematics
File Size : 25. 30 MB
Format : PDF, ePub
Download : 621
Read : 1187

Download Now

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.

Optimization Theory And Methods

Author : Wenyu Sun
ISBN : 9780387249766
Genre : Mathematics
File Size : 51. 15 MB
Format : PDF, Kindle
Download : 450
Read : 943

Download Now

Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.

Handbook On Semidefinite Conic And Polynomial Optimization

Author : Miguel F. Anjos
ISBN : 9781461407690
Genre : Business & Economics
File Size : 24. 77 MB
Format : PDF, Docs
Download : 730
Read : 500

Download Now

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Top Download:

Best Books