generalized linear mixed models modern concepts methods and applications chapman hall crc texts in statistical science

Download Book Generalized Linear Mixed Models Modern Concepts Methods And Applications Chapman Hall Crc Texts In Statistical Science in PDF format. You can Read Online Generalized Linear Mixed Models Modern Concepts Methods And Applications Chapman Hall Crc Texts In Statistical Science here in PDF, EPUB, Mobi or Docx formats.

Generalized Linear Mixed Models

Author : Walter W. Stroup
ISBN : 9781439815137
Genre : Mathematics
File Size : 49. 91 MB
Format : PDF, Kindle
Download : 179
Read : 436

Download Now


Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

Nonparametric Methods In Statistics With Sas Applications

Author : Olga Korosteleva
ISBN : 9781466580633
Genre : Mathematics
File Size : 30. 56 MB
Format : PDF
Download : 160
Read : 155

Download Now


Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods. The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation. Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.

Richly Parameterized Linear Models

Author : James S. Hodges
ISBN : 9781439866849
Genre : Mathematics
File Size : 25. 71 MB
Format : PDF, ePub, Mobi
Download : 668
Read : 405

Download Now


A First Step toward a Unified Theory of Richly Parameterized Linear Models Using mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities. The first two parts of the book cover an existing syntax for unifying models with random effects. The text explains how richly parameterized models can be expressed as mixed linear models and analyzed using conventional and Bayesian methods. In the last two parts, the author discusses oddities that can arise when analyzing data using these models. He presents ways to detect problems and, when possible, shows how to mitigate or avoid them. The book adapts ideas from linear model theory and then goes beyond that theory by examining the information in the data about the mixed linear model’s covariance matrices. Each chapter ends with two sets of exercises. Conventional problems encourage readers to practice with the algebraic methods and open questions motivate readers to research further. Supporting materials, including datasets for most of the examples analyzed, are available on the author’s website.

Biometrics

Author : Susan R. Wilson
ISBN : 1848269366
Genre : Biodiversity
File Size : 28. 6 MB
Format : PDF, Mobi
Download : 488
Read : 779

Download Now



Journal Of The American Statistical Association

Author :
ISBN : UOM:39015072641353
Genre : Statistics
File Size : 90. 16 MB
Format : PDF, ePub, Mobi
Download : 837
Read : 1169

Download Now



The British National Bibliography

Author : Arthur James Wells
ISBN : STANFORD:36105211722686
Genre : English literature
File Size : 47. 65 MB
Format : PDF, Docs
Download : 420
Read : 1203

Download Now



A First Course In Linear Model Theory

Author : Nalini Ravishanker
ISBN : 1584882476
Genre : Mathematics
File Size : 23. 43 MB
Format : PDF, Kindle
Download : 930
Read : 1178

Download Now


This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

Regression

Author : Ludwig Fahrmeir
ISBN : 9783642018374
Genre : Business & Economics
File Size : 68. 6 MB
Format : PDF, Docs
Download : 515
Read : 652

Download Now


In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

Analyse Von Zeitreihen

Author : Christopher Chatfield
ISBN : 3446135979
Genre :
File Size : 77. 14 MB
Format : PDF, ePub, Mobi
Download : 646
Read : 1023

Download Now



Verallgemeinerte Stochastische Prozesse

Author : Stefan Schäffler
ISBN : 9783662542651
Genre : Mathematics
File Size : 22. 65 MB
Format : PDF, Mobi
Download : 929
Read : 971

Download Now


Dieses Lehrbuch behandelt die in Natur- und Ingenieurwissenschaften eine zentrale Rolle spielenden Rauschprozesse, wie weißes Rauschen in der Raumsondenkommunikation oder thermisches Rauschen und Schrotrauschen in elektronischen Bauelementen.In dieser Form einzigartig, entwickelt der Autor die mathematische Theorie der verallgemeinerten stochastischen Prozesse und spricht dabei die Anwendung dieser mathematischen Objekte in der Praxis (z.B. Schaltkreissimulation, digitale Nachrichtenübertragung und Bildverarbeitung) an; somit dient dieses Lehrbuch auch als praxisrelevante Einführung in die Modellierung und Verwendung technischer Rauschprozesse. Die mathematische Modellierung von Rauschprozessen führt auf die Theorie stochastischer Prozesse auf Basis verallgemeinerter Funktionen (Distributionen), ohne die kein Handy funktionieren und Anwendungen wie die Simulation komplexer elektronischer Schaltungen unmöglich wäre.Für Anwender und interessierte Mathematiker bietet dieses Werk erstmals einen mathematisch fundierten Einblick in diese Thematik.

Top Download:

Best Books