financial derivatives in theory and practice wiley series in probability and statistics

Download Book Financial Derivatives In Theory And Practice Wiley Series In Probability And Statistics in PDF format. You can Read Online Financial Derivatives In Theory And Practice Wiley Series In Probability And Statistics here in PDF, EPUB, Mobi or Docx formats.

Financial Derivatives In Theory And Practice

Author : Philip Hunt
ISBN : 0470863587
Genre : Business & Economics
File Size : 69. 93 MB
Format : PDF, Kindle
Download : 993
Read : 661

Download Now


For use in classes at masters and postgraduate level, this text covers financial derivatives in theory and practice.

Financial Derivatives In Theory And Practice

Author : Philip Hunt
ISBN : 0470863595
Genre : Business & Economics
File Size : 61. 11 MB
Format : PDF, ePub, Docs
Download : 906
Read : 955

Download Now


For use in classes at masters and postgraduate level, this text covers financial derivatives in theory and practice.

Financial Derivatives In Theory And Practice Revised Edition

Author : Philip James Hunt
ISBN : OCLC:848799764
Genre : Derivative securities
File Size : 20. 13 MB
Format : PDF, ePub, Docs
Download : 171
Read : 313

Download Now



Time Series

Author : Ngai Hang Chan
ISBN : 9780471461647
Genre : Mathematics
File Size : 53. 40 MB
Format : PDF, Docs
Download : 172
Read : 561

Download Now


Elements of Financial Time Series fills a gap in the market in the area of financial time series analysis by giving both conceptual and practical illustrations. Examples and discussions in the later chapters of the book make recent developments in time series more accessible. Examples from finance are maximized as much as possible throughout the book. * Full set of exercises is displayed at the end of each chapter. * First seven chapters cover standard topics in time series at a high-intensity level. * Recent and timely developments in nonstandard time series techniques are illustrated with real finance examples in detail. * Examples are systemically illustrated with S-plus with codes and data available on an associated Web site.

Nonparametric Statistical Methods

Author : Myles Hollander
ISBN : 9781118553299
Genre : Mathematics
File Size : 72. 81 MB
Format : PDF, Kindle
Download : 786
Read : 1270

Download Now


Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Multivariate Observations

Author : George A. F. Seber
ISBN : 9780470317310
Genre : Mathematics
File Size : 46. 73 MB
Format : PDF, ePub, Docs
Download : 454
Read : 609

Download Now


WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.

Multivariate Statistics

Author : Yasunori Fujikoshi
ISBN : 9780470411698
Genre : Mathematics
File Size : 83. 36 MB
Format : PDF, ePub, Docs
Download : 432
Read : 920

Download Now


A comprehensive examination of high-dimensional analysis ofmultivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-SampleApproximations is the first book of its kind to explore howclassical multivariate methods can be revised and used in place ofconventional statistical tools. Written by prominent researchers inthe field, the book focuses on high-dimensional and large-scaleapproximations and details the many basic multivariate methods usedto achieve high levels of accuracy. The authors begin with a fundamental presentation of the basictools and exact distributional results of multivariate statistics,and, in addition, the derivations of most distributional resultsare provided. Statistical methods for high-dimensional data, suchas curve data, spectra, images, and DNA microarrays, are discussed.Bootstrap approximations from a methodological point of view,theoretical accuracies in MANOVA tests, and model selectioncriteria are also presented. Subsequent chapters feature additionaltopical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance indiscriminant analysis, growth curve models, generalized linearmodels, profile analysis, and multiple comparison Each chapter provides real-world applications and thoroughanalyses of the real data. In addition, approximation formulasfound throughout the book are a useful tool for both practical andtheoretical statisticians, and basic results on exact distributionsin multivariate analysis are included in a comprehensive, yetaccessible, format. Multivariate Statistics is an excellent book for courseson probability theory in statistics at the graduate level. It isalso an essential reference for both practical and theoreticalstatisticians who are interested in multivariate analysis and whowould benefit from learning the applications of analyticalprobabilistic methods in statistics.

Planning Construction And Statistical Analysis Of Comparative Experiments

Author : Francis G. Giesbrecht
ISBN : 0471213950
Genre : Mathematics
File Size : 84. 46 MB
Format : PDF, ePub, Mobi
Download : 885
Read : 1183

Download Now


This text provides a balanced treatment between mathematical necessities and appropriate applications. The theoretical basis compliments the complete documentation of experimental design includingafield theory, number theory and linear algebra.

Statistical Analysis Of Designed Experiments

Author : Ajit C. Tamhane
ISBN : 9781118491430
Genre : Science
File Size : 24. 53 MB
Format : PDF
Download : 780
Read : 287

Download Now


A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.

Models For Probability And Statistical Inference

Author : James H. Stapleton
ISBN : 0470183403
Genre : Mathematics
File Size : 51. 93 MB
Format : PDF, Kindle
Download : 480
Read : 359

Download Now


This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.

Top Download:

Best Books