extending the linear model with r generalized linear mixed effects and nonparametric regression models chapman hall crc texts in statistical science

Download Book Extending The Linear Model With R Generalized Linear Mixed Effects And Nonparametric Regression Models Chapman Hall Crc Texts In Statistical Science in PDF format. You can Read Online Extending The Linear Model With R Generalized Linear Mixed Effects And Nonparametric Regression Models Chapman Hall Crc Texts In Statistical Science here in PDF, EPUB, Mobi or Docx formats.

Extending The Linear Model With R

Author : Julian J. Faraway
ISBN : 0203492285
Genre : Mathematics
File Size : 84. 27 MB
Format : PDF, Mobi
Download : 917
Read : 1194

Download Now


Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

Linear Models With R Second Edition

Author : Julian J. Faraway
ISBN : 9781439887332
Genre : Mathematics
File Size : 37. 91 MB
Format : PDF, ePub, Mobi
Download : 835
Read : 1139

Download Now


A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Extending The Linear Model With R

Author : Julian J. Faraway
ISBN : 149872096X
Genre : Analysis of variance
File Size : 53. 88 MB
Format : PDF, ePub, Docs
Download : 826
Read : 1075

Download Now


Start Analyzing a Wide Range of Problems Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics. New to the Second Edition Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs) Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available Updated coverage of splines and confidence bands in the chapter on nonparametric regression New material on random forests for regression and classification Revamped R code throughout, particularly the many plots using the ggplot2 package Revised and expanded exercises with solutions now included Demonstrates the Interplay of Theory and Practice This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.

Generalized Linear Mixed Models

Author : Walter W. Stroup
ISBN : 9781439815137
Genre : Mathematics
File Size : 38. 48 MB
Format : PDF, Docs
Download : 442
Read : 600

Download Now


Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

A Modern Approach To Regression With R

Author : Simon Sheather
ISBN : 9780387096070
Genre : Mathematics
File Size : 37. 81 MB
Format : PDF, ePub, Docs
Download : 454
Read : 376

Download Now


This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.

Generalized Additive Models

Author : Simon N. Wood
ISBN : 9781498728379
Genre : Mathematics
File Size : 28. 38 MB
Format : PDF, Kindle
Download : 465
Read : 580

Download Now


The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Nonparametric And Semiparametric Models

Author : Wolfgang Härdle
ISBN : 9783642171468
Genre : Mathematics
File Size : 44. 27 MB
Format : PDF, ePub
Download : 140
Read : 1074

Download Now


The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.

Generalized Linear Models Second Edition

Author : P. McCullagh
ISBN : 0412317605
Genre : Mathematics
File Size : 64. 91 MB
Format : PDF, ePub, Mobi
Download : 197
Read : 1275

Download Now


The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.

Generalized Linear Mixed Models

Author : Walter W. Stroup
ISBN : 9781439815137
Genre : Mathematics
File Size : 58. 6 MB
Format : PDF, ePub, Mobi
Download : 724
Read : 1297

Download Now


Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling. See Professor Stroup discuss the book.

Variance Components

Author : Poduri S.R.S. Rao
ISBN : 0412728605
Genre : Mathematics
File Size : 21. 16 MB
Format : PDF, Docs
Download : 905
Read : 1235

Download Now


Variance Components Estimation deals with the evaluation of the variation between observable data or classes of data. This is an up-to-date, comprehensive work that is both theoretical and applied. Topics include ML and REML methods of estimation; Steepest-Acent, Newton-Raphson, scoring, and EM algorithms; MINQUE and MIVQUE, confidence intervals for variance components and their ratios; Bayesian approaches and hierarchical models; mixed models for longitudinal data; repeated measures and multivariate observations; as well as non-linear and generalized linear models with random effects.

Top Download:

Best Books