design theory second edition discrete mathematics and its applications

Download Book Design Theory Second Edition Discrete Mathematics And Its Applications in PDF format. You can Read Online Design Theory Second Edition Discrete Mathematics And Its Applications here in PDF, EPUB, Mobi or Docx formats.

Design Theory

Author : Charles C. Lindner
ISBN : 1420082973
Genre : Mathematics
File Size : 90. 44 MB
Format : PDF, Kindle
Download : 329
Read : 452

Download Now


Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics. This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs. The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems. By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.

Handbook Of Combinatorial Designs Second Edition

Author : Charles J. Colbourn
ISBN : 143983234X
Genre : Mathematics
File Size : 65. 57 MB
Format : PDF, Docs
Download : 275
Read : 1193

Download Now


Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Introduction To Combinatorial Designs Second Edition

Author : W.D. Wallis
ISBN : 9781584888390
Genre : Mathematics
File Size : 79. 67 MB
Format : PDF, ePub, Mobi
Download : 406
Read : 645

Download Now


Combinatorial theory is one of the fastest growing areas of modern mathematics. Focusing on a major part of this subject, Introduction to Combinatorial Designs, Second Edition provides a solid foundation in the classical areas of design theory as well as in more contemporary designs based on applications in a variety of fields. After an overview of basic concepts, the text introduces balanced designs and finite geometries. The author then delves into balanced incomplete block designs, covering difference methods, residual and derived designs, and resolvability. Following a chapter on the existence theorem of Bruck, Ryser, and Chowla, the book discusses Latin squares, one-factorizations, triple systems, Hadamard matrices, and Room squares. It concludes with a number of statistical applications of designs. Reflecting recent results in design theory and outlining several applications, this new edition of a standard text presents a comprehensive look at the combinatorial theory of experimental design. Suitable for a one-semester course or for self-study, it will prepare readers for further exploration in the field. To access supplemental materials for this volume, visit the author’s website at http://www.math.siu.edu/Wallis/designs

Elliptic Curves

Author : Lawrence C. Washington
ISBN : 1420071475
Genre : Mathematics
File Size : 30. 67 MB
Format : PDF
Download : 116
Read : 458

Download Now


Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.

How To Count

Author : R.B.J.T. Allenby
ISBN : 9781420082616
Genre : Mathematics
File Size : 86. 63 MB
Format : PDF
Download : 506
Read : 1147

Download Now


Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.

Handbook Of Graph Theory

Author : Jonathan L. Gross
ISBN : 0203490207
Genre : Mathematics
File Size : 53. 34 MB
Format : PDF, ePub
Download : 228
Read : 206

Download Now


The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approaches as well as "pure" graph theory. They then carefully edited the compilation to produce a unified, authoritative work ideal for ready reference. Designed and edited with non-experts in mind, the Handbook of Graph Theory makes information easy to find and easy to understand. The treatment of each topic includes lists of essential definitions and facts accompanied by examples, tables, remarks, and in some areas, conjectures and open problems. Each section contains a glossary of terms relevant to that topic and an extensive bibliography of references that collectively form an extensive guide to the primary research literature. The applications of graph theory are fast becoming ubiquitous. Whether your primary area of interest lies in mathematics, computer science, engineering, or operations research, this handbook holds the key to unlocking graph theory's intricacies, applications, and potential.

Design Theory

Author : Thomas Beth
ISBN : 0521772311
Genre : Mathematics
File Size : 24. 64 MB
Format : PDF, Docs
Download : 419
Read : 239

Download Now


This is the second edition of the standard text on design theory. Exercises are included throughout, and the book concludes with an extensive and updated bibliography of well over 1800 items.

Introduction To Coding Theory

Author : Jurgen Bierbrauer
ISBN : 9781351989602
Genre : Mathematics
File Size : 83. 59 MB
Format : PDF, ePub
Download : 315
Read : 1090

Download Now


Although its roots lie in information theory, the applications of coding theory now extend to statistics, cryptography, and many areas of pure mathematics, as well as pervading large parts of theoretical computer science, from universal hashing to numerical integration. Introduction to Coding Theory introduces the theory of error-correcting codes in a thorough but gentle presentation. Part I begins with basic concepts, then builds from binary linear codes and Reed-Solomon codes to universal hashing, asymptotic results, and 3-dimensional codes. Part II emphasizes cyclic codes, applications, and the geometric desciption of codes. The author takes a unique, more natural approach to cyclic codes that is not couched in ring theory but by virtue of its simplicity, leads to far-reaching generalizations. Throughout the book, his discussions are packed with applications that include, but reach well beyond, data transmission, with each one introduced as soon as the codes are developed. Although designed as an undergraduate text with myriad exercises, lists of key topics, and chapter summaries, Introduction to Coding Theory explores enough advanced topics to hold equal value as a graduate text and professional reference. Mastering the contents of this book brings a complete understanding of the theory of cyclic codes, including their various applications and the Euclidean algorithm decoding of BCH-codes, and carries readers to the level of the most recent research.

Applied Algebra

Author : Darel W. Hardy
ISBN : 9781420071436
Genre : Mathematics
File Size : 33. 50 MB
Format : PDF
Download : 721
Read : 1314

Download Now


Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition A CD-ROM containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the Authors Darel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.

Handbook Of Discrete And Combinatorial Mathematics

Author : Kenneth H. Rosen
ISBN : 0849301491
Genre : Mathematics
File Size : 57. 53 MB
Format : PDF
Download : 687
Read : 903

Download Now


The importance of discrete and combinatorial mathematics continues to increase as the range of applications to computer science, electrical engineering, and the biological sciences grows dramatically. Providing a ready reference for practitioners in the field, the Handbook of Discrete and Combinatorial Mathematics, Second Edition presents additional material on Google's matrix, random graphs, geometric graphs, computational topology, and other key topics. New chapters highlight essential background information on bioinformatics and computational geometry. Each chapter includes a glossary, definitions, facts, examples, algorithms, major applications, and references.

Top Download:

Best Books