data clustering in c an object oriented approach chapman hall crc data mining and knowledge discovery series

Download Book Data Clustering In C An Object Oriented Approach Chapman Hall Crc Data Mining And Knowledge Discovery Series in PDF format. You can Read Online Data Clustering In C An Object Oriented Approach Chapman Hall Crc Data Mining And Knowledge Discovery Series here in PDF, EPUB, Mobi or Docx formats.

Data Clustering In C

Author : Guojun Gan
ISBN : 9781439862247
Genre : Business & Economics
File Size : 80. 16 MB
Format : PDF, ePub
Download : 919
Read : 687

Download Now


Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms. Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered. This book is divided into three parts-- Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns A C++ Data Clustering Framework: The development of data clustering base classes Data Clustering Algorithms: The implementation of several popular data clustering algorithms A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the CD-ROM of the book. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.

Mining Software Specifications

Author : David Lo
ISBN : 9781439806272
Genre : Computers
File Size : 74. 53 MB
Format : PDF, ePub, Docs
Download : 433
Read : 745

Download Now


An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns. In the first set of chapters, the book introduces a number of studies on mining finite state machines that employ techniques, such as grammar inference, partial order mining, source code model checking, abstract interpretation, and more. The remaining chapters present research on mining temporal rules/patterns, covering techniques that include path-aware static program analyses, lightweight rule/pattern mining, statistical analysis, and other interesting approaches. Throughout the book, the authors discuss how to employ dynamic analysis, static analysis, and combinations of both to mine software specifications. According to the US National Institute of Standards and Technology in 2002, software bugs have cost the US economy 59.5 billion dollars a year. This volume shows how specification mining can help find bugs and improve program understanding, thereby reducing unnecessary financial losses. The book encourages the industry adoption of specification mining techniques and the assimilation of these techniques in standard integrated development environments (IDEs).

Spectral Feature Selection For Data Mining

Author : Zheng Alan Zhao
ISBN : 9781439862100
Genre : Business & Economics
File Size : 78. 13 MB
Format : PDF
Download : 945
Read : 753

Download Now


Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervised feature selection. The book explores the latest research achievements, sheds light on new research directions, and stimulates readers to make the next creative breakthroughs. It presents the intrinsic ideas behind spectral feature selection, its theoretical foundations, its connections to other algorithms, and its use in handling both large-scale data sets and small sample problems. The authors also cover feature selection and feature extraction, including basic concepts, popular existing algorithms, and applications. A timely introduction to spectral feature selection, this book illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. Readers learn how to use spectral feature selection to solve challenging problems in real-life applications and discover how general feature selection and extraction are connected to spectral feature selection.

Advances In Machine Learning And Data Mining For Astronomy

Author : Michael J. Way
ISBN : 9781439841747
Genre : Computers
File Size : 37. 36 MB
Format : PDF, Docs
Download : 527
Read : 1274

Download Now


Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

Music Data Mining

Author : Tao Li
ISBN : 9781439835524
Genre : Business & Economics
File Size : 90. 63 MB
Format : PDF, ePub
Download : 588
Read : 188

Download Now


The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing. The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining. The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

Neuronale Netze Selbst Programmieren

Author : Tariq Rashid
ISBN : 9783960101031
Genre : Computers
File Size : 84. 8 MB
Format : PDF, ePub
Download : 524
Read : 832

Download Now


Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Next Generation Of Data Mining

Author : Hillol Kargupta
ISBN : 1420085875
Genre : Computers
File Size : 53. 97 MB
Format : PDF, ePub, Docs
Download : 616
Read : 596

Download Now


Drawn from the US National Science Foundation’s Symposium on Next Generation of Data Mining and Cyber-Enabled Discovery for Innovation (NGDM 07), Next Generation of Data Mining explores emerging technologies and applications in data mining as well as potential challenges faced by the field. Gathering perspectives from top experts across different disciplines, the book debates upcoming challenges and outlines computational methods. The contributors look at how ecology, astronomy, social science, medicine, finance, and more can benefit from the next generation of data mining techniques. They examine the algorithms, middleware, infrastructure, and privacy policies associated with ubiquitous, distributed, and high performance data mining. They also discuss the impact of new technologies, such as the semantic web, on data mining and provide recommendations for privacy-preserving mechanisms. The dramatic increase in the availability of massive, complex data from various sources is creating computing, storage, communication, and human-computer interaction challenges for data mining. Providing a framework to better understand these fundamental issues, this volume surveys promising approaches to data mining problems that span an array of disciplines.

Handbook Of Educational Data Mining

Author : Cristobal Romero
ISBN : 1439804583
Genre : Business & Economics
File Size : 86. 87 MB
Format : PDF, Docs
Download : 709
Read : 220

Download Now


Handbook of Educational Data Mining (EDM) provides a thorough overview of the current state of knowledge in this area. The first part of the book includes nine surveys and tutorials on the principal data mining techniques that have been applied in education. The second part presents a set of 25 case studies that give a rich overview of the problems that EDM has addressed. Researchers at the Forefront of the Field Discuss Essential Topics and the Latest Advances With contributions by well-known researchers from a variety of fields, the book reflects the multidisciplinary nature of the EDM community. It brings the educational and data mining communities together, helping education experts understand what types of questions EDM can address and helping data miners understand what types of questions are important to educational design and educational decision making. Encouraging readers to integrate EDM into their research and practice, this timely handbook offers a broad, accessible treatment of essential EDM techniques and applications. It provides an excellent first step for newcomers to the EDM community and for active researchers to keep abreast of recent developments in the field.

Arctic Antarctic And Alpine Research

Author :
ISBN : UOM:39015068678823
Genre : Physical geography
File Size : 87. 82 MB
Format : PDF, ePub, Docs
Download : 529
Read : 1284

Download Now



Fuzzy Clusteranalyse

Author : Frank Höppner
ISBN : 9783322868367
Genre : Technology & Engineering
File Size : 70. 51 MB
Format : PDF, ePub, Mobi
Download : 600
Read : 668

Download Now


Dieses Buch ist das Standardwerk zu einem neuen Bereich der angewandten Fuzzy-Technologie, der Fuzzy-Clusteranalyse. Diese beinhaltet Verfahren der Mustererkennung zur Gruppierung und Strukturierung von Daten. Dabei werden im Gegensatz zu klassischen Clustering-Techniken die Daten nicht eindeutig zu Klassen zugeordnet, sondern Zugehörigkeitsgrade bestimmt, so daß die Fuzzy-Verfahren robust gegenüber gestörten oder verrauschten Daten sind und fließende Klassenübergänge handhaben können. Dieses Werk gibt eine methodische Einführung in die zahlreichen Fuzzy-Clustering-Algorithmen mit ihren Anwendungen in den Bereichen Datenanalyse, Erzeugung von Regeln für Fuzzy-Regler, Klassifikations- und Approximationsprobleme sowie eine ausführliche Darstellung des Shell-Clustering zur Erkennung von geometrischen Konturen in Bildern.

Top Download:

Best Books