customer segmentation and clustering using sas enterprise miner third edition

Download Book Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition in PDF format. You can Read Online Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition here in PDF, EPUB, Mobi or Docx formats.

Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition

Author : Randall S. Collica
ISBN : 9781629605272
Genre : Computers
File Size : 53. 1 MB
Format : PDF, ePub, Docs
Download : 970
Read : 555

Download Now


Understanding your customers is the key to your company’s success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Customer Segmentation And Clustering Using Sas Enterprise Miner Second Edition

Author : Randy Collica
ISBN : 9781612900926
Genre : Mathematics
File Size : 59. 88 MB
Format : PDF, ePub, Docs
Download : 680
Read : 1215

Download Now


In Customer Segmentation and Clustering Using SAS Enterprise Miner, Second Edition, Randy Collica employs SAS Enterprise Miner and the most commonly available techniques for customer relationship management (CRM). You will learn how to segment customers more intelligently and to achieve, or at least get closer to, the one-to-one customer relationship that today's businesses want. Step-by-step examples and exercises clearly illustrate the concepts of segmentation and clustering in the context of CRM. The book is divided into four parts. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics such as when and how to update your models and clustering with many attributes. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner software. Part 4 takes segmentation to a new level with advanced techniques such as clustering of product associations, developing segmentation scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. Updates to the second edition include four new chapters in Part 4, Chapters 13-16, that introduce new and advanced analytic techniques that can be valuable in many customer segmentation applications. In addition, Chapter 9 has a new section on using the Imputation node in SAS Enterprise Miner to accomplish missing data imputation, compared to PROC MI used in earlier sections of Chapter 9. Also included are business insights and motivations for selection settings and analytical decisions on many of the examples included in this second edition. This straightforward guide will appeal to anyone who seeks to better understand customers or prospective customers. Additionally, professors and students will find the book well suited for a business data mining analytics course in an MBA program or related course of study. You should understand basic statistics, but no prior knowledge of data mining or SAS Enterprise Miner is required. This book is part of the SAS Press program.

Customer Segmentation And Clustering Using Sas Enterprise Miner Third Edition

Author : Randall S. Collica
ISBN : 9781629605296
Genre : Computers
File Size : 67. 17 MB
Format : PDF
Download : 653
Read : 446

Download Now


Understanding your customers is the key to your company’s success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Predictive Modeling With Sas Enterprise Miner

Author : Kattamuri S. Sarma
ISBN : 9781635260380
Genre : Computers
File Size : 70. 65 MB
Format : PDF
Download : 650
Read : 222

Download Now


A step-by-step guide to predictive modeling! Kattamuri Sarma's Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Third Edition, will show you how to develop and test predictive models quickly using SAS Enterprise Miner. Using realistic data, the book explains complex methods in a simple and practical way to readers from different backgrounds and industries. Incorporating the latest version of Enterprise Miner, this third edition also expands the section on time series. Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. Topics covered include logistic regression, regression, decision trees, neural networks, variable clustering, observation clustering, data imputation, binning, data exploration, variable selection, variable transformation, and much more, including analysis of textual data. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner!

Segmentation And Lifetime Value Models Using Sas

Author : Edward C. Malthouse
ISBN : 9781612907062
Genre : Mathematics
File Size : 53. 58 MB
Format : PDF, ePub
Download : 517
Read : 403

Download Now


Help your organization determine the value of its customer relationships with Segmentation and Lifetime Value Models Using SAS. This book contains a wealth of information that will help you perform analyses to identify your customers and make informed marketing investments. It answers core questions on customer relationship management (CRM), provides an overall framework for thinking about CRM, and offers real-world examples across a variety of industries. Edward C. Malthouse introduces you to a number of useful models, ranging from simple to more complicated examples, and discusses their applications. You'll learn about segmentation models for identifying groups of customers and about lifetime value models for estimating the future value of the segments. You'll learn how to prepare data and estimate models using Base SAS, SAS/STAT, SAS/IML, and SQL. Marketing analysts, CRM analysts, database managers, and anyone looking to address the challenges of allocating marketing resources to different customer groups will benefit from the concepts and exercises in this book. Analysts will learn how to approach unique business problems. Managers will gain a sense of what's possible and what to ask of their analytics departments. This book is part of the SAS Press program.

Business Analytics Using Sas Enterprise Guide And Sas Enterprise Miner

Author : Olivia Parr-Rud
ISBN : 9781629593289
Genre : Mathematics
File Size : 56. 67 MB
Format : PDF, ePub
Download : 615
Read : 297

Download Now


This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software. Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. This book is part of the SAS Press program.

Getting Started With Sas Enterprise Miner 12 3

Author : SAS Institute
ISBN : 9781612907710
Genre : Computers
File Size : 43. 10 MB
Format : PDF, ePub, Mobi
Download : 382
Read : 801

Download Now


Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results.

Strategic Analytics And Sas

Author : Randall S. Collica
ISBN : 9781629604381
Genre : Computers
File Size : 82. 97 MB
Format : PDF, Kindle
Download : 868
Read : 566

Download Now


Use aggregate data to answer high-level business questions! Data miners, data scientists, analytic managers, and analysts who work in all industries will find the insights in Randy Collica's Strategic Analytics and SAS: Using Aggregate Data to Drive Organizational Initiatives invaluable in their work. This book shows you how to use your existing data at aggregate levels to answer high-level business questions. Written in a detailed, step-by-step format, the multi-industry use cases begin with a high-level question that a C-level executive might ask. Collica then progresses through the steps to perform the analysis, including many tables and screenshots to guide you along the way. He then ends each use case with the solution to the high-level question. Topics covered include logistic analysis, models developed from surveys, survival analysis, confidence intervals, text mining and analysis, visual analytics, hypothesis tests, and size and magnitude of analytic effects. Connect the dots between detailed data on your customers and the high-level business goals of your organization with Strategic Analytics and SAS!

Decision Trees For Analytics Using Sas Enterprise Miner

Author : Barry de Ville
ISBN : 9781629591001
Genre : Mathematics
File Size : 77. 26 MB
Format : PDF, Kindle
Download : 567
Read : 214

Download Now


Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book. This book is part of the SAS Press program.

Business Survival Analysis Using Sas

Author : Jorge Ribeiro
ISBN : 9781629605197
Genre : Computers
File Size : 46. 61 MB
Format : PDF, Kindle
Download : 452
Read : 855

Download Now


Solve business problems involving time-to-event and resulting probabilities by following the modeling tutorials in Business Survival Analysis Using SAS®: An Introduction to Lifetime Probabilities, the first book to be published in the field of business survival analysis! Survival analysis is a challenge. Books applying to health sciences exist, but nothing about survival applications for business has been available until now. Written for analysts, forecasters, econometricians, and modelers who work in marketing or credit risk and have little SAS modeling experience, Business Survival Analysis Using SAS® builds on a foundation of SAS code that works in any survival model and features numerous annotated graphs, coefficients, and statistics linked to real business situations and data sets. This guide also helps recent graduates who know the statistics but do not necessarily know how to apply them get up and running in their jobs. By example, it teaches the techniques while avoiding advanced theoretical underpinnings so that busy professionals can rapidly deliver a survival model to meet common business needs. From first principles, this book teaches survival analysis by highlighting its relevance to business cases. A pragmatic introduction to survival analysis models, it leads you through business examples that contextualize and motivate the statistical methods and SAS coding. Specifically, it illustrates how to build a time-to-next-purchase survival model in SAS® Enterprise Miner, and it relates each step to the underlying statistics and to Base SAS® and SAS/STAT® software. Following the many examples—from data preparation to validation to scoring new customers—you will learn to develop and apply survival analysis techniques to scenarios faced by companies in the financial services, insurance, telecommunication, and marketing industries, including the following scenarios: Time-to-next-purchase for marketing Employer turnover for human resources Small business portfolio macroeconometric stress tests for banks International Financial Reporting Standard (IFRS 9) lifetime probability of default for banks and building societies "Churn," or attrition, models for the telecommunications and insurance industries

Top Download:

Best Books