classical mathematical logic the semantic foundations of logic

Download Book Classical Mathematical Logic The Semantic Foundations Of Logic in PDF format. You can Read Online Classical Mathematical Logic The Semantic Foundations Of Logic here in PDF, EPUB, Mobi or Docx formats.

Classical Mathematical Logic

Author : Richard L. Epstein
ISBN : 9781400841554
Genre : Mathematics
File Size : 30. 96 MB
Format : PDF, Kindle
Download : 470
Read : 204

Download Now


In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.

The Semantic Foundations Of Logic

Author : Richard L. Epstein
ISBN : 0792306228
Genre : Computers
File Size : 62. 8 MB
Format : PDF, ePub, Mobi
Download : 667
Read : 192

Download Now



The Semantic Foundations Of Logic Volume 1 Propositional Logics

Author : R.L. Epstein
ISBN : 9789400905252
Genre : Philosophy
File Size : 63. 7 MB
Format : PDF, ePub, Mobi
Download : 583
Read : 169

Download Now


This book grew out of my confusion. If logic is objective how can there be so many logics? Is there one right logic, or many right ones? Is there some underlying unity that connects them? What is the significance of the mathematical theorems about logic which I've learned if they have no connection to our everyday reasoning? The answers I propose revolve around the perception that what one pays attention to in reasoning determines which logic is appropriate. The act of abstracting from our reasoning in our usual language is the stepping stone from reasoned argument to logic. We cannot take this step alone, for we reason together: logic is reasoning which has some objective value. For you to understand my answers, or perhaps better, conjectures, I have retraced my steps: from the concrete to the abstract, from examples, to general theory, to further confirming examples, to reflections on the significance of the work.

The Semantic Foundations Of Logic Predicate Logic

Author :
ISBN : NWU:35556025290578
Genre : Logic
File Size : 67. 38 MB
Format : PDF, ePub, Mobi
Download : 901
Read : 568

Download Now



Propositional Logics

Author : Richard L. Epstein
ISBN : 0983452164
Genre : Mathematics
File Size : 81. 17 MB
Format : PDF
Download : 667
Read : 391

Download Now


Propositional Logics presents the history, philosophy, and mathematics of the major systems of propositional logic. Classical logic, modal logics, many-valued logics, intuitionism, paraconsistent logics, and dependent implication are examined in separate chapters. Each begins with a motivation in the originators' own terms, followed by the standard formal semantics, syntax, and completeness theorem. The chapters on the various logics are largely self-contained so that the book can be used as a reference. An appendix summarizes the formal semantics and axiomatizations of the logics. The view that unifies the exposition is that propositional logics comprise a spectrum. As the aspect of propositions under consideration varies, the logic varies. Each logic is shown to fall naturally within a general framework for semantics. A theory of translations between logics is presented that allows for further comparisons, and necessary conditions are given for a translation to preserve meaning. For this third edition the material has been re-organized to make the text easier to study, and a new section on paraconsistent logics with simple semantics has been added which challenges standard views on the nature of consequence relations. The text includes worked examples and hundreds of exercises, from routine to open problems, making the book with its clear and careful exposition ideal for courses or individual study.

Einf Hrung In Die Mathematische Logik

Author : Hans Hermes
ISBN : 3519222019
Genre : Technology & Engineering
File Size : 38. 26 MB
Format : PDF, Kindle
Download : 983
Read : 746

Download Now


Das vorliegende, 1963 in erster Auflage erschienene Buch ist aus Vorlesungen hervorgegangen. Es soll eine Einführung in die klassische zweiwertige Prädikaten logik geben. Die Beschränkung auf die klassische Logik soll nicht besagen, daß diese Logik prinzipiell einen Vorzug vor anderen, nichtklassischen Logiken besitzt. Die klassische Logik empfiehlt sich jedoch als Einführung in die Logik wegen ihrer Einfachheit und als Fundament für die Anwendung deshalb, weil sie der klassischen Mathematik und damit den darauf aufgebauten exakten Wissenschaften zugrunde liegt. Das Buch wendet sich primär an Studierende der Mathematik, die in den An fängervorlesungen bereits einige grundlegende mathematische Begriffe, wie den Gruppenbegriff, kennengelernt haben. Der Leser soll dazu geführt werden, daß er die Vorteile einer Formalisierung einsieht. Der übergang von der Umgangssprache zu einer formalisierten Sprache, welcher erfahrungsgemäß gewisse Schwierigkeiten bereitet, wird eingehend besprochen und eingeübt. Die Analyse desmathemati schen Umgangs mit den grundlegenden mathematischen Strukturen führt in zwangloser Weise zum semantisch begründeten Folgerungsbegriff.

Mathematical Logic

Author : Wei Li
ISBN : 9783034808620
Genre : Mathematics
File Size : 59. 65 MB
Format : PDF
Download : 372
Read : 1248

Download Now


Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.

Einf Hrung In Die Nicht Klassische Logik

Author : Graham Priest
ISBN : 3897855429
Genre : Nonclassical mathematical logic
File Size : 36. 47 MB
Format : PDF, ePub
Download : 305
Read : 787

Download Now



Introduction To Mathematical Logic

Author : Hans Hermes
ISBN : 9783642871320
Genre : Mathematics
File Size : 58. 30 MB
Format : PDF
Download : 779
Read : 1155

Download Now


This book grew out of lectures. It is intended as an introduction to classical two-valued predicate logic. The restriction to classical logic is not meant to imply that this logic is intrinsically better than other, non-classical logics; however, classical logic is a good introduction to logic because of its simplicity, and a good basis for applications because it is the foundation of classical mathematics, and thus of the exact sciences which are based on it. The book is meant primarily for mathematics students who are already acquainted with some of the fundamental concepts of mathematics, such as that of a group. It should help the reader to see for himself the advantages of a formalisation. The step from the everyday language to a formalised language, which usually creates difficulties, is dis cussed and practised thoroughly. The analysis of the way in which basic mathematical structures are approached in mathematics leads in a natural way to the semantic notion of consequence. One of the substantial achievements of modern logic has been to show that the notion of consequence can be replaced by a provably equivalent notion of derivability which is defined by means of a calculus. Today we know of many calculi which have this property.

The Bulletin Of Symbolic Logic

Author :
ISBN : UOM:39015079802636
Genre : Logic, Symbolic and mathematical
File Size : 37. 72 MB
Format : PDF
Download : 681
Read : 329

Download Now



Top Download:

Best Books