classical field theory on electrodynamics non abelian gauge theories and gravitation graduate texts in physics

Download Book Classical Field Theory On Electrodynamics Non Abelian Gauge Theories And Gravitation Graduate Texts In Physics in PDF format. You can Read Online Classical Field Theory On Electrodynamics Non Abelian Gauge Theories And Gravitation Graduate Texts In Physics here in PDF, EPUB, Mobi or Docx formats.

Classical Field Theory

Author : Florian Scheck
ISBN : 9783662555798
Genre : Science
File Size : 41. 2 MB
Format : PDF, ePub
Download : 566
Read : 236

Download Now


Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity. The new concept of this edition presents the content divided into two tracks: the fast track for master's students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Cleary labeled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Classical Field Theory.

Electroweak And Strong Interactions

Author : Florian Scheck
ISBN : 9783642202414
Genre : Science
File Size : 32. 61 MB
Format : PDF, ePub
Download : 894
Read : 289

Download Now


After an introduction to relativistic quantum mechanics, which lays the foundation for the rest of the text, the author moves on to the phenomenology and physics of fundamental interactions via a detailed discussion of the empirical principles of unified theories of strong, electromagnetic, and weak interactions. There then follows a development of local gauge theories and the minimal standard model of the fundamental interactions together with their characteristic applications. The book concludes with further possibilities and the theory of interactions for elementary particles probing complex nuclei. Numerous exercises with solutions make this an ideal text for graduate courses on quantum mechanics and elementary particle physics.

Classical Field Theory

Author : Davison E. Soper
ISBN : 9780486462608
Genre : Science
File Size : 57. 98 MB
Format : PDF, Docs
Download : 392
Read : 863

Download Now


This text concerns continuum mechanics, electrodynamics and the mechanics of electrically polarized media, and gravity. Geared toward advanced undergraduates and graduate students, it offers an accessible approach that formulates theories according to the principle of least action. The chief advantage of this formulation is its simplicity and ease, making the physical content of classical subjects available to students of physics in a concise form. Author Davison E. Soper, a Professor of Physics at the University of Oregon, intended this treatment as a primary text for courses in classical field theory as well as a supplement for courses in classical mechanics or classical electrodynamics. Topics include fields and transformation laws, the principle of stationary action, general features of classical field theory, the mechanics of fluids and elastic solids, special types of solids, nonrelativistic approximations, and the electromagnetic field. Additional subjects include electromagnetically polarized materials, gravity, momentum conservation in general relativity, and dissipative processes.

The Classical Theory Of Fields

Author : Carl S. Helrich
ISBN : 9783642232046
Genre : Science
File Size : 59. 35 MB
Format : PDF, Docs
Download : 214
Read : 740

Download Now


The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dispersive medium complete the picture. High quality diagrams and detailed end-of-chapter questions enhance the learning experience.

The Dawning Of Gauge Theory

Author : Lochlainn O'Raifeartaigh
ISBN : 0691029776
Genre : Science
File Size : 23. 65 MB
Format : PDF, ePub, Docs
Download : 394
Read : 469

Download Now


During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.

Statistical Theory Of Heat

Author : Florian Scheck
ISBN : 9783319400495
Genre : Science
File Size : 24. 84 MB
Format : PDF, ePub, Docs
Download : 399
Read : 547

Download Now


Scheck’s textbook starts with a concise introduction to classical thermodynamics, including geometrical aspects. Then a short introduction to probabilities and statistics lays the basis for the statistical interpretation of thermodynamics. Phase transitions, discrete models and the stability of matter are explained in great detail.Thermodynamics has a special role in theoretical physics. Due to the general approach of thermodynamics the field has as a bridging function between several areas like the theory of condensed matter, elementary particle physics, astrophysics and cosmology. The classical thermodynamics describes predominantly averaged properties of matter, reaching from few particle systems and state of matter to stellar objects. Statistical Thermodynamics covers the same fields, but explores them in greater depth and unifies classical statistical mechanics with quantum theory of multiple particle systems. The content is presented as two tracks: the fast track for master students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Clearly labelled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Statistical Physics and Thermodynamics.

Gauge Theories In Particle Physics

Author : I.J.R. Aitchison
ISBN : 0849387752
Genre : Science
File Size : 30. 86 MB
Format : PDF, Docs
Download : 419
Read : 432

Download Now


Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this two-volume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and self-contained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED; the second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.

Anomalies In Quantum Field Theory

Author : Reinhold A. Bertlmann
ISBN : 0198507623
Genre : Science
File Size : 70. 90 MB
Format : PDF, ePub
Download : 290
Read : 881

Download Now


An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies. The comprehensive overview of the theory presented in this book will be useful to both students and researchers.

Quantum Physics

Author : Florian Scheck
ISBN : 9783642345630
Genre : Science
File Size : 40. 71 MB
Format : PDF
Download : 366
Read : 347

Download Now


Scheck’s Quantum Physics presents a comprehensive introductory treatment, ideally suited for a two-semester course. Part One covers the basic principles and prime applications of quantum mechanics, from the uncertainty relations to many-body systems. Part Two introduces to relativistic quantum field theory and ranges from symmetries in quantum physics to electroweak interactions. Numerous worked-out examples as well as exercises, with solutions or hints, enables the book’s use as an accompanying text for courses, and also for independent study. For both parts, the necessary mathematical framework is treated in adequate form and detail. The book ends with appendices covering mathematical fundamentals and enrichment topics, plus selected biographical notes on pioneers of quantum mechanics and quantum field theory. The new edition was thoroughly revised and now includes new sections on quantization using the path integral method and on deriving generalized path integrals for bosonic and fermionic fields.

Quantum Field Theory I

Author : E. B. Manoukian
ISBN : 9783319309392
Genre : Science
File Size : 58. 15 MB
Format : PDF, ePub, Mobi
Download : 938
Read : 973

Download Now


This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.

Top Download:

Best Books