big data management and processing

Download Book Big Data Management And Processing in PDF format. You can Read Online Big Data Management And Processing here in PDF, EPUB, Mobi or Docx formats.

Big Data Management And Processing

Author : Kuan-Ching Li
ISBN : 9781351650045
Genre : Computers
File Size : 50. 11 MB
Format : PDF, Kindle
Download : 576
Read : 812

Download Now


From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.

Large Scale And Big Data

Author : Sherif Sakr
ISBN : 9781466581500
Genre : Computers
File Size : 85. 66 MB
Format : PDF, ePub, Docs
Download : 762
Read : 838

Download Now


Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Big Data Management Technologies And Applications

Author : Hu, Wen-Chen
ISBN : 9781466647008
Genre : Computers
File Size : 66. 96 MB
Format : PDF, ePub
Download : 629
Read : 1175

Download Now


"This book discusses the exponential growth of information size and the innovative methods for data capture, storage, sharing, and analysis for big data"--Provided by publisher.

Soft Computing In Big Data Processing

Author : Keon Myung Lee
ISBN : 9783319055275
Genre : Computers
File Size : 89. 19 MB
Format : PDF, Docs
Download : 928
Read : 862

Download Now


Big data is an essential key to build a smart world as a meaning of the streaming, continuous integration of large volume and high velocity data covering from all sources to final destinations. The big data range from data mining, data analysis and decision making, by drawing statistical rules and mathematical patterns through systematical or automatically reasoning. The big data helps serve our life better, clarify our future and deliver greater value. We can discover how to capture and analyze data. Readers will be guided to processing system integrity and implementing intelligent systems. With intelligent systems, we deal with the fundamental data management and visualization challenges in effective management of dynamic and large-scale data, and efficient processing of real-time and spatio-temporal data. Advanced intelligent systems have led to managing the data monitoring, data processing and decision-making in realistic and effective way. Considering a big size of data, variety of data and frequent changes of data, the intelligent systems basically challenge new data management tasks for integration, visualization, querying and analysis. Connected with powerful data analysis, the intelligent systems will provide a paradigm shift from conventional store and process systems. This book focuses on taking a full advantage of big data and intelligent systems processing. It consists of 11 contributions that feature extraction of minority opinion, method for reusing an application, assessment of scientific and innovative projects, multi-voxel pattern analysis, exploiting No-SQL DB, materialized view, TF-IDF criterion, latent Dirichlet allocation, technology forecasting, small world network, and classification & regression tree structure. This edition is published in original, peer reviewed contributions covering from initial design to final prototypes and authorization.

Managing And Processing Big Data In Cloud Computing

Author : Kannan, Rajkumar
ISBN : 9781466697683
Genre : Computers
File Size : 29. 53 MB
Format : PDF, Docs
Download : 582
Read : 172

Download Now


Big data has presented a number of opportunities across industries. With these opportunities come a number of challenges associated with handling, analyzing, and storing large data sets. One solution to this challenge is cloud computing, which supports a massive storage and computation facility in order to accommodate big data processing. Managing and Processing Big Data in Cloud Computing explores the challenges of supporting big data processing and cloud-based platforms as a proposed solution. Emphasizing a number of crucial topics such as data analytics, wireless networks, mobile clouds, and machine learning, this publication meets the research needs of data analysts, IT professionals, researchers, graduate students, and educators in the areas of data science, computer programming, and IT development.

Big Data

Author : Kuan-Ching Li
ISBN : 9781482240566
Genre : Computers
File Size : 83. 7 MB
Format : PDF, ePub, Docs
Download : 447
Read : 730

Download Now


As today’s organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages. Presenting the contributions of leading experts in their respective fields, Big Data: Algorithms, Analytics, and Applications bridges the gap between the vastness of Big Data and the appropriate computational methods for scientific and social discovery. It covers fundamental issues about Big Data, including efficient algorithmic methods to process data, better analytical strategies to digest data, and representative applications in diverse fields, such as medicine, science, and engineering. The book is organized into five main sections: Big Data Management—considers the research issues related to the management of Big Data, including indexing and scalability aspects Big Data Processing—addresses the problem of processing Big Data across a wide range of resource-intensive computational settings Big Data Stream Techniques and Algorithms—explores research issues regarding the management and mining of Big Data in streaming environments Big Data Privacy—focuses on models, techniques, and algorithms for preserving Big Data privacy Big Data Applications—illustrates practical applications of Big Data across several domains, including finance, multimedia tools, biometrics, and satellite Big Data processing Overall, the book reports on state-of-the-art studies and achievements in algorithms, analytics, and applications of Big Data. It provides readers with the basis for further efforts in this challenging scientific field that will play a leading role in next-generation database, data warehousing, data mining, and cloud computing research. It also explores related applications in diverse sectors, covering technologies for media/data communication, elastic media/data storage, cross-network media/data fusion, and SaaS.

Big Data

Author : Fei Hu
ISBN : 9781498734875
Genre : Computers
File Size : 44. 13 MB
Format : PDF, Mobi
Download : 993
Read : 249

Download Now


Although there are already some books published on Big Data, most of them only cover basic concepts and society impacts and ignore the internal implementation details—making them unsuitable to R&D people. To fill such a need, Big Data: Storage, Sharing, and Security examines Big Data management from an R&D perspective. It covers the 3S designs—storage, sharing, and security—through detailed descriptions of Big Data concepts and implementations. Written by well-recognized Big Data experts around the world, the book contains more than 450 pages of technical details on the most important implementation aspects regarding Big Data. After reading this book, you will understand how to: Aggregate heterogeneous types of data from numerous sources, and then use efficient database management technology to store the Big Data Use cloud computing to share the Big Data among large groups of people Protect the privacy of Big Data during network sharing With the goal of facilitating the scientific research and engineering design of Big Data systems, the book consists of two parts. Part I, Big Data Management, addresses the important topics of spatial management, data transfer, and data processing. Part II, Security and Privacy Issues, provides technical details on security, privacy, and accountability. Examining the state of the art of Big Data over clouds, the book presents a novel architecture for achieving reliability, availability, and security for services running on the clouds. It supplies technical descriptions of Big Data models, algorithms, and implementations, and considers the emerging developments in Big Data applications. Each chapter includes references for further study.

Big Data

Author : Rajkumar Buyya
ISBN : 9780128093467
Genre : Computers
File Size : 66. 4 MB
Format : PDF, Docs
Download : 873
Read : 410

Download Now


Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data’s full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. Covers computational platforms supporting Big Data applications Addresses key principles underlying Big Data computing Examines key developments supporting next generation Big Data platforms Explores the challenges in Big Data computing and ways to overcome them Contains expert contributors from both academia and industry

Entity Information Life Cycle For Big Data

Author : John R. Talburt
ISBN : 9780128006658
Genre : Computers
File Size : 33. 88 MB
Format : PDF, Mobi
Download : 815
Read : 159

Download Now


Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data’s impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems Offers practical guidance to help you design and build an EIM system that will successfully handle big data Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions

Handbook Of Big Data Technologies

Author : Albert Y. Zomaya
ISBN : 9783319493404
Genre : Computers
File Size : 67. 57 MB
Format : PDF, Docs
Download : 424
Read : 1016

Download Now


This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.

Top Download:

Best Books