basic statistics an introduction with r

Download Book Basic Statistics An Introduction With R in PDF format. You can Read Online Basic Statistics An Introduction With R here in PDF, EPUB, Mobi or Docx formats.

Basic Statistics

Author : Tenko Raykov
ISBN : 9781442218468
Genre : Education
File Size : 27. 72 MB
Format : PDF, ePub, Docs
Download : 610
Read : 904

Download Now


Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: .Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader .Introduces students to R with as few sub-commands as possible for ease of use .Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences."

Introductory Statistics With R

Author : Peter Dalgaard
ISBN : 9780387790541
Genre : Mathematics
File Size : 83. 22 MB
Format : PDF, Kindle
Download : 132
Read : 983

Download Now


This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Statistics

Author : Michael J. Crawley
ISBN : 9781118941102
Genre : Mathematics
File Size : 66. 82 MB
Format : PDF, Kindle
Download : 456
Read : 176

Download Now


"...I know of no better book of its kind..." (Journal of the Royal Statistical Society, Vol 169 (1), January 2006) A revised and updated edition of this bestselling introductory textbook to statistical analysis using the leading free software package R This new edition of a bestselling title offers a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a wide range of disciplines. Step-by-step instructions help the non-statistician to fully understand the methodology. The book covers the full range of statistical techniques likely to be needed to analyse the data from research projects, including elementary material like t--tests and chi--squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within each chapter.

Introduction To Probability And Statistics Using R

Author : G. Jay Kerns
ISBN : 9780557249794
Genre :
File Size : 70. 50 MB
Format : PDF, ePub
Download : 981
Read : 735

Download Now



The R Book

Author : Michael J. Crawley
ISBN : 9781118448960
Genre : Mathematics
File Size : 44. 55 MB
Format : PDF, Mobi
Download : 325
Read : 1048

Download Now


Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Introduction To Statistics Through Resampling Methods And R

Author : Phillip I. Good
ISBN : 9781118497579
Genre : Mathematics
File Size : 26. 4 MB
Format : PDF, Kindle
Download : 149
Read : 1032

Download Now


A highly accessible alternative approach to basic statistics Praise for the First Edition: "Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician."—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected "hints"—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.

An Introduction To Statistical Learning

Author : Gareth James
ISBN : 9781461471387
Genre : Mathematics
File Size : 83. 30 MB
Format : PDF, ePub, Mobi
Download : 431
Read : 1228

Download Now


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Biostatistics With R

Author : Babak Shahbaba
ISBN : 9781461413028
Genre : Medical
File Size : 21. 87 MB
Format : PDF, ePub
Download : 868
Read : 328

Download Now


Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.

Computational Statistics

Author : Günther Sawitzki
ISBN : 1420086812
Genre : Mathematics
File Size : 55. 40 MB
Format : PDF, Docs
Download : 433
Read : 1093

Download Now


Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of statistics and computing. This introduction covers one-sample analysis and distribution diagnostics, regression, two-sample problems and comparison of distributions, and multivariate analysis. It uses a range of examples to demonstrate how R can be employed to tackle statistical problems. In addition, the handy appendix includes a collection of R language elements and functions, serving as a quick reference and starting point to access the rich information that comes bundled with R. Accessible to a broad audience, this book explores key topics in data analysis, regression, statistical distributions, and multivariate statistics. Full of examples and with a color insert, it helps readers become familiar with R.

Foundations And Applications Of Statistics An Introduction Using R Second Edition

Author : Randall Pruim
ISBN : 9781470428488
Genre : Mathematical statistics
File Size : 46. 32 MB
Format : PDF, Kindle
Download : 788
Read : 243

Download Now


Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.

Top Download:

Best Books