applied missing data analysis in the health sciences statistics in practice

Download Book Applied Missing Data Analysis In The Health Sciences Statistics In Practice in PDF format. You can Read Online Applied Missing Data Analysis In The Health Sciences Statistics In Practice here in PDF, EPUB, Mobi or Docx formats.

Applied Missing Data Analysis In The Health Sciences

Author : Chuan Zhou
ISBN : 0470523816
Genre : Mathematics
File Size : 44. 74 MB
Format : PDF, ePub, Docs
Download : 264
Read : 810

Download Now


A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various modern statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference methods and the field of diagnostic medicine. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into traditional techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book’s subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using the SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies in the field of biostatistics to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.

Applied Mixed Models In Medicine

Author : Helen Brown
ISBN : 9781118778258
Genre : Medical
File Size : 48. 9 MB
Format : PDF, ePub, Docs
Download : 577
Read : 991

Download Now



Network Meta Analysis For Decision Making

Author : Sofia Dias
ISBN : 9781118647509
Genre : Mathematics
File Size : 60. 43 MB
Format : PDF
Download : 272
Read : 792

Download Now


A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question “for this pre-identified population of patients, which treatment is ‘best’?” A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Longitudinal Data Analysis

Author : Donald Hedeker
ISBN : 9780470036471
Genre : Mathematics
File Size : 69. 10 MB
Format : PDF, ePub, Mobi
Download : 574
Read : 227

Download Now


Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

Multivariate Statistics

Author : Yasunori Fujikoshi
ISBN : 9780470411698
Genre : Mathematics
File Size : 32. 13 MB
Format : PDF, Kindle
Download : 177
Read : 888

Download Now


A comprehensive examination of high-dimensional analysis ofmultivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-SampleApproximations is the first book of its kind to explore howclassical multivariate methods can be revised and used in place ofconventional statistical tools. Written by prominent researchers inthe field, the book focuses on high-dimensional and large-scaleapproximations and details the many basic multivariate methods usedto achieve high levels of accuracy. The authors begin with a fundamental presentation of the basictools and exact distributional results of multivariate statistics,and, in addition, the derivations of most distributional resultsare provided. Statistical methods for high-dimensional data, suchas curve data, spectra, images, and DNA microarrays, are discussed.Bootstrap approximations from a methodological point of view,theoretical accuracies in MANOVA tests, and model selectioncriteria are also presented. Subsequent chapters feature additionaltopical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance indiscriminant analysis, growth curve models, generalized linearmodels, profile analysis, and multiple comparison Each chapter provides real-world applications and thoroughanalyses of the real data. In addition, approximation formulasfound throughout the book are a useful tool for both practical andtheoretical statisticians, and basic results on exact distributionsin multivariate analysis are included in a comprehensive, yetaccessible, format. Multivariate Statistics is an excellent book for courseson probability theory in statistics at the graduate level. It isalso an essential reference for both practical and theoreticalstatisticians who are interested in multivariate analysis and whowould benefit from learning the applications of analyticalprobabilistic methods in statistics.

Modes Of Parametric Statistical Inference

Author : Seymour Geisser
ISBN : 9780471743125
Genre : Mathematics
File Size : 74. 69 MB
Format : PDF, Kindle
Download : 569
Read : 355

Download Now


A fascinating investigation into the foundations of statisticalinference This publication examines the distinct philosophical foundations ofdifferent statistical modes of parametric inference. Unlike manyother texts that focus on methodology and applications, this bookfocuses on a rather unique combination of theoretical andfoundational aspects that underlie the field of statisticalinference. Readers gain a deeper understanding of the evolution andunderlying logic of each mode as well as each mode's strengths andweaknesses. The book begins with fascinating highlights from the history ofstatistical inference. Readers are given historical examples ofstatistical reasoning used to address practical problems that arosethroughout the centuries. Next, the book goes on to scrutinize fourmajor modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples andcounterexamples of situations and datasets where the modes yieldboth similar and dissimilar results, including a violation of thelikelihood principle in which Bayesian and likelihood methodsdiffer from frequentist methods. Each example is followed by adetailed discussion of why the results may have varied from onemode to another, helping the reader to gain a greater understandingof each mode and how it works. Moreover, the author providesconsiderable mathematical detail on certain points to highlight keyaspects of theoretical development. The author's writing style and use of examples make the text clearand engaging. This book is fundamental reading for graduate-levelstudents in statistics as well as anyone with an interest in thefoundations of statistics and the principles underlying statisticalinference, including students in mathematics and the philosophy ofscience. Readers with a background in theoretical statistics willfind the text both accessible and absorbing.

Longitudinal Data Analysis

Author : Jason Newsom
ISBN : 9781136705472
Genre : Psychology
File Size : 54. 64 MB
Format : PDF, ePub, Docs
Download : 172
Read : 1156

Download Now


First Published in 2012. Routledge is an imprint of Taylor & Francis, an informa company.

Missing Data Analysis In Practice

Author : Trivellore Raghunathan
ISBN : 9781482211931
Genre : Mathematics
File Size : 74. 74 MB
Format : PDF, Kindle
Download : 624
Read : 806

Download Now


Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online. The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference.

Genetic Counseling Research A Practical Guide

Author : Ian MacFarlane
ISBN : 9780199359110
Genre : Medical
File Size : 82. 56 MB
Format : PDF, Docs
Download : 668
Read : 173

Download Now


Genetic Counseling Research: A Practical Guide is the first text devoted to research methodology in genetic counseling. This text offers step-by-step guidance for conducting research, from the development of a question to the publication of findings. Genetic counseling examples, user-friendly worksheets, and practical tips guide readers through the research and publication processes. With a highly accessible, pedagogical approach, this book will help promote quality research by genetic counselors and research supervisors--and in turn, increase the knowledge base for genetic counseling practice, other aspects of genetic counseling service delivery, and professional education. It will be an invaluable resource to the next generation of genetic counseling and its surrounding disciplines.

The Analysis Of Covariance And Alternatives

Author : Bradley Huitema
ISBN : 1118067460
Genre : Mathematics
File Size : 82. 25 MB
Format : PDF, ePub
Download : 921
Read : 178

Download Now


A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.

Top Download:

Best Books