an introduction to difference equations undergraduate texts in mathematics

Download Book An Introduction To Difference Equations Undergraduate Texts In Mathematics in PDF format. You can Read Online An Introduction To Difference Equations Undergraduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.

An Introduction To Difference Equations

Author : Saber N. Elaydi
ISBN : 9781475731101
Genre : Mathematics
File Size : 30. 84 MB
Format : PDF, ePub
Download : 384
Read : 602

Download Now


Integrating both classical and modern treatments of difference equations, this book contains the most updated and comprehensive material on stability, Z-transform, discrete control theory, asymptotic theory, continued fractions and orthogonal polynomials. While the presentation is simple enough for use by advanced undergraduates and beginning graduates in mathematics, engineering science, and economics, it will also be a useful reference for scientists and engineers interested in discrete mathematical models. The text covers a large set of applications in a variety of disciplines, including neural networks, feedback control, Markov chains, trade models, heat transfer, propagation of plants, epidemic models and host-parasitoid systems, with each section rounded off by an extensive and highly selected set of exercises.

An Introduction To Difference Equations

Author : Saber N. Elaydi
ISBN : 9781475791686
Genre : Mathematics
File Size : 83. 59 MB
Format : PDF, ePub, Docs
Download : 310
Read : 1229

Download Now


This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.

An Introduction To Difference Equations

Author : Saber Elaydi
ISBN : 9780387230597
Genre : Mathematics
File Size : 67. 5 MB
Format : PDF, Mobi
Download : 155
Read : 392

Download Now


A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style

Difference Equations

Author : Paul Cull
ISBN : 9780387276458
Genre : Mathematics
File Size : 37. 40 MB
Format : PDF, ePub, Docs
Download : 806
Read : 749

Download Now


In this new text, designed for sophomores studying mathematics and computer science, the authors cover the basics of difference equations and some of their applications in computing and in population biology. Each chapter leads to techniques that can be applied by hand to small examples or programmed for larger problems. Along the way, the reader will use linear algebra and graph theory, develop formal power series, solve combinatorial problems, visit Perron—Frobenius theory, discuss pseudorandom number generation and integer factorization, and apply the Fast Fourier Transform to multiply polynomials quickly. The book contains many worked examples and over 250 exercises. While these exercises are accessible to students and have been class-tested, they also suggest further problems and possible research topics.

A First Course In Differential Equations

Author : J. David Logan
ISBN : 9783319178523
Genre : Mathematics
File Size : 69. 10 MB
Format : PDF, Mobi
Download : 205
Read : 441

Download Now


The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.

Introduction To Differential Equations

Author : Michael Eugene Taylor
ISBN : 9780821852712
Genre : Mathematics
File Size : 81. 39 MB
Format : PDF, Kindle
Download : 618
Read : 869

Download Now


The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponential and trigonometric functions, which plays a central role in the subsequent development of this chapter. Chapter 2 provides a mini-course on linear algebra, giving detailed treatments of linear transformations, determinants and invertibility, eigenvalues and eigenvectors, and generalized eigenvectors. This treatment is more detailed than that in most differential equations texts, and provides a solid foundation for the next two chapters. Chapter 3 studies linear systems of differential equations. It starts with the matrix exponential, melding material from Chapters 1 and 2, and uses this exponential as a key tool in the linear theory. Chapter 4 deals with nonlinear systems of differential equations. This uses all the material developed in the first three chapters and moves it to a deeper level. The chapter includes theoretical studies, such as the fundamental existence and uniqueness theorem, but also has numerous examples, arising from Newtonian physics, mathematical biology, electrical circuits, and geometrical problems. These studies bring in variational methods, a fertile source of nonlinear systems of differential equations. The reader who works through this book will be well prepared for advanced studies in dynamical systems, mathematical physics, and partial differential equations.

An Introduction To Differential Equations And Their Applications

Author : Stanley J. Farlow
ISBN : 9780486135137
Genre : Mathematics
File Size : 68. 49 MB
Format : PDF, Kindle
Download : 704
Read : 220

Download Now


This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Differential Equations

Author : Clay C. Ross
ISBN : 9781475739497
Genre : Mathematics
File Size : 60. 72 MB
Format : PDF, ePub
Download : 476
Read : 1267

Download Now


The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.

Difference Equations

Author : Walter G. Kelley
ISBN : 012403330X
Genre : Mathematics
File Size : 27. 54 MB
Format : PDF, ePub, Mobi
Download : 731
Read : 1127

Download Now


Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. * Phase plane analysis for systems of two linear equations * Use of equations of variation to approximate solutions * Fundamental matrices and Floquet theory for periodic systems * LaSalle invariance theorem * Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory * Appendix on the use of Mathematica for analyzing difference equaitons * Exponential generating functions * Many new examples and exercises

Introduction To Partial Differential Equations

Author : Peter J. Olver
ISBN : 9783319020990
Genre : Mathematics
File Size : 86. 23 MB
Format : PDF, ePub, Mobi
Download : 203
Read : 950

Download Now


This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Top Download:

Best Books