# an introduction to difference equations undergraduate texts in mathematics

**Download Book An Introduction To Difference Equations Undergraduate Texts In Mathematics in PDF format. You can Read Online An Introduction To Difference Equations Undergraduate Texts In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## An Introduction To Difference Equations

**Author :**Saber N. Elaydi

**ISBN :**9781475791686

**Genre :**Mathematics

**File Size :**50. 59 MB

**Format :**PDF, ePub, Docs

**Download :**912

**Read :**295

This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.

## Differential Equations

**Author :**Clay C. Ross

**ISBN :**9781475739497

**Genre :**Mathematics

**File Size :**89. 91 MB

**Format :**PDF, ePub

**Download :**802

**Read :**790

The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.

## Difference Equations

**Author :**Paul Cull

**ISBN :**9780387276458

**Genre :**Mathematics

**File Size :**52. 32 MB

**Format :**PDF, ePub

**Download :**648

**Read :**361

In this new text, designed for sophomores studying mathematics and computer science, the authors cover the basics of difference equations and some of their applications in computing and in population biology. Each chapter leads to techniques that can be applied by hand to small examples or programmed for larger problems. Along the way, the reader will use linear algebra and graph theory, develop formal power series, solve combinatorial problems, visit Perron—Frobenius theory, discuss pseudorandom number generation and integer factorization, and apply the Fast Fourier Transform to multiply polynomials quickly. The book contains many worked examples and over 250 exercises. While these exercises are accessible to students and have been class-tested, they also suggest further problems and possible research topics.

## Introduction To Difference Equations

**Author :**Samuel Goldberg

**ISBN :**9780486650845

**Genre :**Mathematics

**File Size :**78. 36 MB

**Format :**PDF, ePub

**Download :**634

**Read :**1322

Exceptionally clear exposition of an important mathematical discipline and its applications to sociology, economics, and psychology. Topics include calculus of finite differences, difference equations, matrix methods, and more. 1958 edition.

## A First Course In Differential Equations

**Author :**J David Logan

**ISBN :**1441975926

**Genre :**Mathematics

**File Size :**40. 68 MB

**Format :**PDF, ePub, Mobi

**Download :**406

**Read :**335

This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: First-order equations: separable, linear, autonomous, and bifurcation phenomena; Second-order linear homogeneous and non-homogeneous equations; Laplace transforms; and Linear and nonlinear systems, and phase plane properties.

## Introduction To Differential Equations

**Author :**Michael Eugene Taylor

**ISBN :**9780821852712

**Genre :**Mathematics

**File Size :**82. 55 MB

**Format :**PDF, Mobi

**Download :**101

**Read :**779

The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponential and trigonometric functions, which plays a central role in the subsequent development of this chapter. Chapter 2 provides a mini-course on linear algebra, giving detailed treatments of linear transformations, determinants and invertibility, eigenvalues and eigenvectors, and generalized eigenvectors. This treatment is more detailed than that in most differential equations texts, and provides a solid foundation for the next two chapters. Chapter 3 studies linear systems of differential equations. It starts with the matrix exponential, melding material from Chapters 1 and 2, and uses this exponential as a key tool in the linear theory. Chapter 4 deals with nonlinear systems of differential equations. This uses all the material developed in the first three chapters and moves it to a deeper level. The chapter includes theoretical studies, such as the fundamental existence and uniqueness theorem, but also has numerous examples, arising from Newtonian physics, mathematical biology, electrical circuits, and geometrical problems. These studies bring in variational methods, a fertile source of nonlinear systems of differential equations. The reader who works through this book will be well prepared for advanced studies in dynamical systems, mathematical physics, and partial differential equations.

## Introduction To Partial Differential Equations

**Author :**Peter J. Olver

**ISBN :**9783319020990

**Genre :**Mathematics

**File Size :**89. 53 MB

**Format :**PDF, Docs

**Download :**175

**Read :**243

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

## Ordinary Differential Equations

**Author :**William A. Adkins

**ISBN :**9781461436188

**Genre :**Mathematics

**File Size :**60. 13 MB

**Format :**PDF, ePub, Docs

**Download :**374

**Read :**1294

Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.

## An Introduction To Ordinary Differential Equations

**Author :**James C. Robinson

**ISBN :**9781139450027

**Genre :**Mathematics

**File Size :**65. 30 MB

**Format :**PDF

**Download :**357

**Read :**440

This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.

## Differential Equations And Dynamical Systems

**Author :**Lawrence Perko

**ISBN :**9781461300038

**Genre :**Mathematics

**File Size :**37. 17 MB

**Format :**PDF, Docs

**Download :**392

**Read :**490

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.