# abstract algebra an inquiry based approach textbooks in mathematics

**Download Book Abstract Algebra An Inquiry Based Approach Textbooks In Mathematics in PDF format. You can Read Online Abstract Algebra An Inquiry Based Approach Textbooks In Mathematics here in PDF, EPUB, Mobi or Docx formats.**

## Abstract Algebra

**Author :**Jonathan K. Hodge

**ISBN :**9781466567061

**Genre :**Mathematics

**File Size :**41. 61 MB

**Format :**PDF, ePub

**Download :**334

**Read :**1040

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think. The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text. Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.

## Abstract Algebra

**Author :**Jonathan K. Hodge

**ISBN :**9781466567085

**Genre :**Mathematics

**File Size :**56. 89 MB

**Format :**PDF

**Download :**582

**Read :**751

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think. The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text. Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.

## Linear And Nonlinear Programming With Maple

**Author :**Paul E. Fishback

**ISBN :**1420090658

**Genre :**Business & Economics

**File Size :**81. 59 MB

**Format :**PDF, ePub

**Download :**634

**Read :**1170

Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.

## Abstract Algebra

**Author :**Gary L. Mullen

**ISBN :**9781482250077

**Genre :**Mathematics

**File Size :**73. 60 MB

**Format :**PDF

**Download :**906

**Read :**1011

Abstract Algebra: A Gentle Introduction advantages a trend in mathematics textbook publishing towards smaller, less expensive and brief introductions to primary courses. The authors move away from the ‘everything for everyone’ approach so common in textbooks. Instead, they provide the reader with coverage of numerous algebraic topics to cover the most important areas of abstract algebra. Through a careful selection of topics, supported by interesting applications, the authors Intend the book to be used for a one-semester course in abstract algebra. It is suitable for an introductory course in for mathematics majors. The text is also very suitable for education majors who need to have an introduction to the topic. As textbooks go through various editions and authors employ the suggestions of numerous well-intentioned reviewers, these book become larger and larger and subsequently more expensive. This book is meant to counter that process. Here students are given a "gentle introduction," meant to provide enough for a course, yet also enough to encourage them toward future study of the topic. Features Groups before rings approach Interesting modern applications Appendix includes mathematical induction, the well-ordering principle, sets, functions, permutations, matrices, and complex nubers. Numerous exercises at the end of each section Chapter "Hint and Partial Solutions" offers built in solutions manual

## Visual Group Theory

**Author :**Nathan Carter

**ISBN :**088385757X

**Genre :**Mathematics

**File Size :**87. 44 MB

**Format :**PDF, Docs

**Download :**410

**Read :**264

Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts. But its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.

## Discovering Group Theory

**Author :**Tony Barnard

**ISBN :**9781315405766

**Genre :**Mathematics

**File Size :**20. 82 MB

**Format :**PDF, ePub, Docs

**Download :**329

**Read :**368

Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking. ? Features Full proofs with all details clearly laid out and explained Reader-friendly conversational style Complete solutions to all exercises Focus on deduction, helping students learn how to construct proofs "Asides" to the reader, providing overviews and connections "What you should know" reviews at the end of each chapter

## Number Theory Through Inquiry

**Author :**David C. Marshall

**ISBN :**9780883857519

**Genre :**Mathematics

**File Size :**81. 85 MB

**Format :**PDF, Mobi

**Download :**99

**Read :**675

This innovative textbook leads students on a carefully guided discovery of introductory number theory. The book has two equally significant goals. The first is to help students develop mathematical thinking skills, particularly theorem-proving skills. The other goal is to help students understand some of the wonderfully rich ideas in the mathematical study of numbers. This book is appropriate for a proof transitions course, for independent study, or for a course designed as an introduction to abstract mathematics. It is designed to be used with an instructional technique variously called guided discovery or Modified Moore Method or Inquiry Based Learning (IBL). Instructors' materials explain the instructional method, which gives students a totally different experience compared to a standard lecture course. Students develop an attitude of personal reliance and a sense that they can think effectively about difficult problems; goals that are fundamental to the educational enterprise within and beyond mathematics.

## Euclidean Geometry

**Author :**David M. Clark

**ISBN :**9780821889855

**Genre :**Mathematics

**File Size :**85. 75 MB

**Format :**PDF, Mobi

**Download :**816

**Read :**205

Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in the Common Core State Standards for high school synthetic geometry. The presentation uses a guided inquiry, active learning pedagogy. Students benefit from the axiomatic development because they themselves solve the problems and prove the theorems with the instructor serving as a guide and mentor. Students are thereby empowered with the knowledge that they can solve problems on their own without reference to authority. This book, written for an undergraduate axiomatic geometry course, is particularly well suited for future secondary school teachers. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.

## Abstract Algebra

**Author :**David R. Finston

**ISBN :**9783319044989

**Genre :**Mathematics

**File Size :**20. 48 MB

**Format :**PDF, ePub, Docs

**Download :**356

**Read :**1103

This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

## A First Course In Abstract Algebra

**Author :**Marlow Anderson

**ISBN :**9781420057119

**Genre :**Mathematics

**File Size :**22. 49 MB

**Format :**PDF, ePub, Docs

**Download :**274

**Read :**800

Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there is more natural-and ultimately more effective. Authors Anderson and Feil developed A First Course in Abstract Algebra: Rings, Groups and Fields based upon that conviction. The text begins with ring theory, building upon students' familiarity with integers and polynomials. Later, when students have become more experienced, it introduces groups. The last section of the book develops Galois Theory with the goal of showing the impossibility of solving the quintic with radicals. Each section of the book ends with a "Section in a Nutshell" synopsis of important definitions and theorems. Each chapter includes "Quick Exercises" that reinforce the topic addressed and are designed to be worked as the text is read. Problem sets at the end of each chapter begin with "Warm-Up Exercises" that test fundamental comprehension, followed by regular exercises, both computational and "supply the proof" problems. A Hints and Answers section is provided at the end of the book. As stated in the title, this book is designed for a first course--either one or two semesters in abstract algebra. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex numbers.