a first course in structural equation modeling

Download Book A First Course In Structural Equation Modeling in PDF format. You can Read Online A First Course In Structural Equation Modeling here in PDF, EPUB, Mobi or Docx formats.

A First Course In Structural Equation Modeling

Author : Tenko Raykov
ISBN : 9781135600761
Genre : Business & Economics
File Size : 31. 60 MB
Format : PDF
Download : 709
Read : 291

Download Now

In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one. Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner’s guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software. Highlights of the Second Edition include: • Review of latent change (growth) analysis models at an introductory level • Coverage of the popular Mplus program • Updated examples of LISREL and EQS • A CD that contains all of the text’s LISREL, EQS, and Mplus examples. A First Course in Structural Equation Modeling is intended as an introductory book for students and researchers in psychology, education, business, medicine, and other applied social, behavioral, and health sciences with limited or no previous exposure to SEM. A prerequisite of basic statistics through regression analysis is recommended. The book frequently draws parallels between SEM and regression, making this prior knowledge helpful.

Structural Equation Modeling

Author : Gregory R. Hancock
ISBN : 9781623962463
Genre : Education
File Size : 47. 86 MB
Format : PDF, Kindle
Download : 552
Read : 887

Download Now

Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians This volume is the second edition of Hancock and Mueller’s highlysuccessful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didacticallyoriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM). Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.

A Beginner S Guide To Structural Equation Modeling

Author : Randall E. Schumacker
ISBN : 9781317608097
Genre : Psychology
File Size : 84. 9 MB
Format : PDF, ePub
Download : 523
Read : 551

Download Now

Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.

Structural Equation Modeling

Author : David Kaplan
ISBN : 9781483342597
Genre : Social Science
File Size : 49. 25 MB
Format : PDF, ePub, Mobi
Download : 865
Read : 1144

Download Now

Using detailed, empirical examples, Structural Equation Modeling, Second Edition, presents a thorough and sophisticated treatment of the foundations of structural equation modeling (SEM). It also demonstrates how SEM can provide a unique lens on the problems social and behavioral scientists face. Intended Audience While the book assumes some knowledge and background in statistics, it guides readers through the foundations and critical assumptions of SEM in an easy-to-understand manner.

Introduction To Psychometric Theory

Author : Tenko Raykov
ISBN : 9781136900020
Genre : Psychology
File Size : 54. 81 MB
Format : PDF, Mobi
Download : 249
Read : 1255

Download Now

This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.

Structural Equation Modeling With Mplus

Author : Barbara M. Byrne
ISBN : 9781136663468
Genre : Education
File Size : 49. 4 MB
Format : PDF, ePub, Docs
Download : 640
Read : 804

Download Now

"This text aims to provide readers with a nonmathematical introduction to the basic concepts associated with structural equation modeling, and to illustrate its basic applications using the Mplus program"--Provided by publisher.

Multivariate Statistical Methods

Author : George A. Marcoulides
ISBN : 9781317778547
Genre : Psychology
File Size : 55. 11 MB
Format : PDF, Docs
Download : 553
Read : 775

Download Now

Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate method. Many computer examples--drawing on SAS software --are used as demonstrations. Throughout the book, the computer is used as an adjunct to the presentation of a multivariate statistical method in an empirically oriented approach. Basically, the model adopted in this book is to first present the theory of a multivariate statistical method along with the basic mathematical computations necessary for the analysis of data. Subsequently, a real world problem is discussed and an example data set is provided for analysis. Throughout the presentation and discussion of a method, many references are made to the computer, output are explained, and exercises and examples with real data are included.

Principles And Practice Of Structural Equation Modeling Fourth Edition

Author : Rex B. Kline
ISBN : 9781462523009
Genre : Social Science
File Size : 67. 84 MB
Format : PDF, ePub, Docs
Download : 381
Read : 1034

Download Now

Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by exercises with answers, rules to remember, and topic boxes. The companion website supplies data, syntax, and output for the book's examples--now including files for Amos, EQS, LISREL, Mplus, Stata, and R (lavaan). New to This Edition *Extensively revised to cover important new topics: Pearl's graphing theory and the SCM, causal inference frameworks, conditional process modeling, path models for longitudinal data, item response theory, and more. *Chapters on best practices in all stages of SEM, measurement invariance in confirmatory factor analysis, and significance testing issues and bootstrapping. *Expanded coverage of psychometrics. *Additional computer tools: online files for all detailed examples, previously provided in EQS, LISREL, and Mplus, are now also given in Amos, Stata, and R (lavaan). *Reorganized to cover the specification, identification, and analysis of observed variable models separately from latent variable models. Pedagogical Features *Exercises with answers, plus end-of-chapter annotated lists of further reading. *Real examples of troublesome data, demonstrating how to handle typical problems in analyses. *Topic boxes on specialized issues, such as causes of nonpositive definite correlations. *Boxed rules to remember. *Website promoting a learn-by-doing approach, including syntax and data files for six widely used SEM computer tools.

Longitudinal Structural Equation Modeling

Author : Todd D. Little
ISBN : 9781462510276
Genre : Psychology
File Size : 43. 17 MB
Format : PDF, Kindle
Download : 122
Read : 464

Download Now

Featuring actual datasets as illustrative examples, this book reveals numerous ways to apply structural equation modeling (SEM) to any repeated-measures study. Initial chapters lay the groundwork for modeling a longitudinal change process, from measurement, design, and specification issues to model evaluation and interpretation. Covering both big-picture ideas and technical "how-to-do-it" details, the author deftly walks through when and how to use longitudinal confirmatory factor analysis, longitudinal panel models (including the multiple-group case), multilevel models, growth curve models, and complex factor models, as well as models for mediation and moderation. User-friendly features include equation boxes that clearly explain the elements in every equation, end-of-chapter glossaries, and annotated suggestions for further reading. The companion website (www.guilford.com/little-materials) provides datasets for all of the examples--which include studies of bullying, adolescent students' emotions, and healthy aging--with syntax and output from LISREL, Mplus, and R (lavaan).

Structural Equation Modeling With Amos

Author : Barbara M. Byrne
ISBN : 9781317633129
Genre : Psychology
File Size : 80. 79 MB
Format : PDF, Kindle
Download : 778
Read : 175

Download Now

This bestselling text provides a practical guide to structural equation modeling (SEM) using the Amos Graphical approach. Using clear, everyday language, the text is ideal for those with little to no exposure to either SEM or Amos. The author reviews SEM applications based on actual data taken from her own research. Each chapter "walks" readers through the steps involved (specification, estimation, evaluation, and post hoc modification) in testing a variety of SEM models. Accompanying each application is: an explanation of the issues addressed and a schematic presentation of hypothesized model structure; Amos input and output with interpretations; use of the Amos toolbar icons and pull-down menus; and data upon which the model application was based, together with updated references pertinent to the SEM model tested. Thoroughly updated throughout, the new edition features: All new screen shots featuring Amos Version 23. Descriptions and illustrations of Amos’ new Tables View format which enables the specification of a structural model in spreadsheet form. Key concepts and/or techniques that introduce each chapter. Alternative approaches to model analyses when enabled by Amos thereby allowing users to determine the method best suited to their data. Provides analysis of the same model based on continuous and categorical data (Ch. 5) thereby enabling readers to observe two ways of specifying and testing the same model as well as compare results. All applications based on the Amos graphical mode interface accompanied by more "how to" coverage of graphical techniques unique to Amos. More explanation of key procedures and analyses that address questions posed by readers All application data files are available at www.routledge.com/9781138797031. The two introductory chapters in Section 1 review the fundamental concepts of SEM methodology and a general overview of the Amos program. Section 2 provides single-group analyses applications including two first-order confirmatory factor analytic (CFA) models, one second-order CFA model, and one full latent variable model. Section 3 presents multiple-group analyses applications with two rooted in the analysis of covariance structures and one in the analysis of mean and covariance structures. Two models that are increasingly popular with SEM practitioners, construct validity and testing change over time using the latent growth curve, are presented in Section 4. The book concludes with a review of the use of bootstrapping to address non-normal data and a review of missing (or incomplete) data in Section 5. An ideal supplement for graduate level courses in psychology, education, business, and social and health sciences that cover the fundamentals of SEM with a focus on Amos, this practical text continues to be a favorite of both researchers and practitioners. A prerequisite of basic statistics through regression analysis is recommended but no exposure to either SEM or Amos is required.

Top Download:

Best Books