a concise introduction to numerical analysis

Download Book A Concise Introduction To Numerical Analysis in PDF format. You can Read Online A Concise Introduction To Numerical Analysis here in PDF, EPUB, Mobi or Docx formats.

A Concise Introduction To Numerical Analysis

Author : A. C. Faul
ISBN : 9781498712217
Genre : Mathematics
File Size : 79. 74 MB
Format : PDF, ePub, Mobi
Download : 250
Read : 1140

Download Now


This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.

Mathematical Analysis

Author : Bernd S. W. Schröder
ISBN : 0470226765
Genre : Mathematics
File Size : 50. 45 MB
Format : PDF
Download : 609
Read : 890

Download Now


A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.

Introduction To Numerical Analysis

Author : Alastair Wood
ISBN : PSU:000046232267
Genre : Mathematics
File Size : 83. 97 MB
Format : PDF, ePub
Download : 566
Read : 646

Download Now


Author Alastair Wood provides a clear and concise book for novice numerical analysts. Computer based experiments allow readers to learn by doing. Methods are developed with sufficient background, allowing readers to see why a method works and when a method does not work. Wood offers an introduction to the more basic theoretical elements, as well as generating practical skills. Computer skills and real applications are stressed as Wood explores such topics as the Taylor Series, Maclaurin Series, Jacobi Iteration and Gauss-Seidel iteration. For novice Numerical Analysts.

A Short Introduction To Numerical Analysis

Author : M. V. Wilkes
ISBN : 0521094127
Genre : Mathematics
File Size : 33. 83 MB
Format : PDF
Download : 228
Read : 1037

Download Now


This short book sets out the principles of the methods commonly employed in obtaining numerical solutions to mathematical equations and shows how they are applied in solving particular types of equations. Now that computing facilities are available to most universities, scientific and engineering laboratories and design shops, an introduction to numerical method is an essential part of the training of scientists and engineers. A course on the lines of Professor Wilkes's book is given to graduate or undergraduate students of mathematics, the physical sciences and engineering at many universities and the number will increase. By concentrating on the essentials of his subject and giving it a modern slant, Professor Wilkes has written a book that is both concise and that covers the needs of a great many users of digital computers; it will serve also as a sound introduction for those who need to consult more detailed works.

A Friendly Introduction To Numerical Analysis

Author : Brian Bradie
ISBN : 0130130540
Genre : Mathematics
File Size : 68. 60 MB
Format : PDF, ePub, Mobi
Download : 965
Read : 1017

Download Now


This reader-friendly introduction to the fundamental concepts and techniques of numerical analysis/numerical methods develops concepts and techniques in a clear, concise, easy-to- read manner, followed by fully-worked examples. Application problems drawn from the literature of many different fields prepares readers to use the techniques covered to solve a wide variety of practical problems. Rootfinding. Systems of Equations. Eigenvalues and Eigenvectors. Interpolation and Curve Fitting. Numerical Differentiation and Integration. Numerical Methods for Initial Value Problems of Ordinary Differential Equations. Second-Order One-Dimensional Two-Point Boundary Value Problems. Finite Difference Method for Elliptic Partial Differential Equations. Finite Difference Method for Parabolic Partial Differential Equations. Finite Difference Method for Hyperbolic Partial Differential Equations and the Convection-Diffusion Equation. For anyone interested in numerical analysis/methods and their applications in many fields

Numerische Lineare Algebra

Author : Folkmar Bornemann
ISBN : 9783658128845
Genre : Mathematics
File Size : 72. 32 MB
Format : PDF, Kindle
Download : 967
Read : 606

Download Now


Dieses Buch führt anhand grundlegender Problemstellungen der linearen Algebra in das algorithmisch-numerische Denken ein. Die Beschränkung auf die lineare Algebra sichert dabei eine stärkere thematische Kohärenz als sie sonst in einführenden Vorlesungen zur Numerik zu finden ist. Die Darstellung betont die Zweckmäßigkeit von Matrixpartitionierungen gegenüber einer komponentenweisen Betrachtung, was sich nicht nur in einer übersichtlicheren Notation und kürzeren Algorithmen auszahlt, sondern angesichts moderner Computerarchitekturen auch zu signifikanten Laufzeitgewinnen führt. Die Algorithmen und begleitenden numerischen Beispiele werden in der Programmierumgebung MATLAB angegeben, zusätzlich aber in einem Anhang auch in der zukunftsweisenden, frei zugänglichen Programmiersprache Julia. Das vorliegende Buch eignet sich für eine zweistündige Vorlesung über numerische lineare Algebra ab dem zweiten Semester des Bachelorstudiengangs Mathematik.

A Concise Introduction To Geometric Numerical Integration

Author : Sergio Blanes
ISBN : 9781315354866
Genre : Mathematics
File Size : 63. 15 MB
Format : PDF
Download : 283
Read : 244

Download Now


Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.

Introduction To Numerical Analysis

Author : J. Stoer
ISBN : 9781475755923
Genre : Mathematics
File Size : 88. 88 MB
Format : PDF, ePub, Docs
Download : 441
Read : 179

Download Now


This book is based on a one-year introductory course on numerical analysis given by the authors at several universities in Germany and the United States. The authors concentrate on methods which can be worked out on a digital computer. For important topics, algorithmic descriptions (given more or less formally in ALGOL 60), as well as thorough but concise treatments of their theoretical founda tions, are provided. Where several methods for solving a problem are presented, comparisons of their applicability and limitations are offered. Each comparison is based on operation counts, theoretical properties such as convergence rates, and, more importantly, the intrinsic numerical properties that account for the reliability or unreliability of an algorithm. Within this context, the introductory chapter on error analysis plays a special role because it precisely describes basic concepts, such as the numerical stability of algorithms, that are indispensable in the thorough treatment of numerical questions. The remaining seven chapters are devoted to describing numerical methods in various contexts. In addition to covering standard topics, these chapters encom pass some special subjects not usually found in introductions to numerical analysis. Chapter 2, which discusses interpolation, gives an account of modem fast Fourier transform methods. In Chapter 3, extrapolation techniques for spe~d ing up the convergence of discretization methods in connection with Romberg integration are explained at length.

Numerical Solution Of Ordinary Differential Equations

Author : Kendall Atkinson
ISBN : 9781118164525
Genre : Mathematics
File Size : 25. 12 MB
Format : PDF, ePub, Mobi
Download : 537
Read : 757

Download Now


A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Analysis With Algorithms And Computer Programs In C

Author : AJAY WADHWA
ISBN : 9788120345454
Genre : Computers
File Size : 30. 68 MB
Format : PDF, Kindle
Download : 639
Read : 776

Download Now


This concise introduction to Numerical Methods blends the traditional algebraic approach with the computer-based approach, with special emphasis on evolving algorithms which have been directly transformed into programs in C++. Each numerical method used for solving nonlinear algebraic equations, simultaneous linear equations, differentiation, integration, ordinary differential equations, curve-fitting, etc. is accompanied by an algorithm and the corresponding computer program. All computer programs have been test run on Linux ‘Ubuntu C++’ as well as Window-based ‘Dev C++’, Visual C++ and ‘Turbo C++’ compiler systems. Since different types of C++ compilers are in use today, instructions have been given with each computer program to run it on any kind of compiler. To this effect, an introductory chapter on C++ compilers has been added for ready reference by the students and teachers. Another major feature of the book is the coverage of the practicals prescribed for laboratory work in Numerical Analysis. Each chapter has a large number of laboratory tested programming examples and exercises including questions from previous years’ examinations. This textbook is intended for the undergraduate science students pursuing courses in BSc (Hons.) Physics, BSc (Hons.) Electronics and BSc (Hons.) Mathematics. It is also suitable for courses on Numerical Analysis prescribed for the engineering students of all disciplines.

Top Download:

Best Books